Supplementary Information

Oxygen removal from intact biomass to produce liquid fuel range hydrocarbons via fast-hydropyrolysis and vapor-phase catalytic hydrodeoxygenation

Vinod Kumar Venkatakrishnan,^{a,b}

W. Nicholas Delgass,^{a,b} Fabio H. Ribeiro,^{a,b} and Rakesh Agrawal^{a,b,*}

^a School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, USA

^b Center for Direct Catalytic Conversion of Biomass to Biofuels (C3Bio), Bindley Bioscience Center, Discovery Park, West Lafayette, IN 47907, USA

* To whom correspondence should be addressed. Email: <u>agrawalr@purdue.edu</u>

Materials

The microcrystalline cellulose (50µm) was purchased from Sigma-Aldrich (St. Louis, MO, USA). The poplar feedstock (termed BESC standard poplar) was a genotype of *Populus trichocarpa* grown at Oak Ridge National Laboratory.¹ The poplar feedstock, which was dried and milled to less than 80 mesh (< 0.177 mm), was obtained from National Renewable Energy Laboratory (NREL). The poplar feedstock was then sieved to pass through a 270 mesh screen for a particle size of <53 µm, comparable to the microcrystalline cellulose, for the experiments reported in this manuscript. Ultra high purity (99.999%) hydrogen and high purity (99.995%) nitrogen purchased from Indiana Oxygen Company (Indianapolis, IN, USA) were used for the experiments.

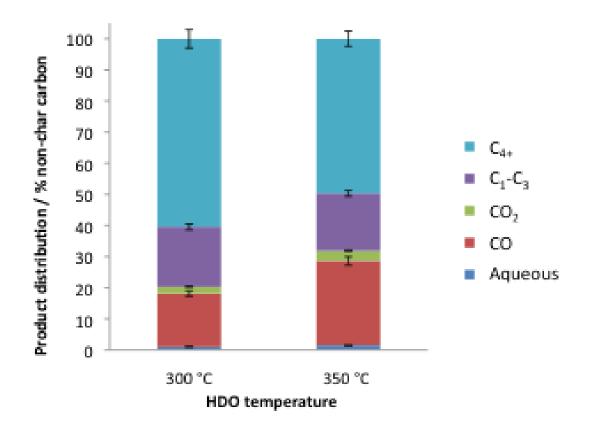
Ultimate Analysis				
	Cellulose	Poplar		
Carbon / %wt (dry)	44.70	50.72		
Hydrogen / %wt (dry)	6.31	5.88		
Nitrogen / %wt (dry)	0.19	0.14		
Sulfur / %wt (dry)	< 0.01	< 0.01		
Ash / %wt (dry)	0.04	1.89		
Oxygen / %wt (dry), by difference	48.76	41.37		
Proximate Analysis				
Moisture / % wt as used	0.94	3.32		
Volatile Matter / %wt (dry)	98.24	88.63		
Fixed Carbon / %wt (dry)	1.72	9.48		
HHV / BTU lb ⁻¹	6963	8153		

Table S.1: Ultimate and proximate analysis of cellulose and poplar feedstocks

	Poplar
Cellulose	44.5
Xylan	14.0
Arabinan	0.2
Galactan	1.1
Mannan	2.6
Hemicellulose (total)	17.9
Lignin	26.3
Extractives	3.1
Acetate	3.6

Table S.2: Compositional analysis of the poplar feedstock, % wt (dry)

	Cellulose	Poplar
CO / % carbon in feed	15.6	9.6
CO_2 / % carbon in feed	2.0	2.7
Char / % carbon in feed	3.4	28.5
Aqueous phase / % carbon in feed	0.9	0.4
Product Hydrocarbons Yield / % ca	arbon in feed	
Methane (C_1)	5.3	9.8
Ethane (C ₂)	6.1	6.9
Propane (C ₃)	6.2	5.0
Total (C_1 - C_3) range	17.6	21.7
i-butane	0.3	0.4
n-butane	7.9	5.3
Total C ₄	<i>8.2</i>	5.7
2-methyl butane	0.8	0.5
n-pentane	10.9	3.0
cyclopentane	4.5	3.0
Total C ₅	16.2	6.5
n-hexane	17.6	1.1
cyclohexane	1.6	2.6
Other C ₆ branched and cyclic isomers	4.0	1.2
Total C ₆	23.2	4.9
(Mixture of n-heptane, methylcyclohexane, other branched and cyclic isomers) <i>Total</i> C_7	1.9	2.8
(Mixture of n-octane, ethylcyclohexane, n-nonane, propylcyclohexane, other branched and cyclic isomers) $Total C_{8+}$	5.5	12.2
Total C ₄₊ range	55.0	32.1
Total hydrocarbons (C_1 - C_{8+})	72.6	53.8
Overall carbon balance	94.5	95.0
Unaccounted carbon	5.5	5.0
Estimated hydrogen consumption / $g_{H2} g_{feed}^{-1}$	~0.05	~0.05


Table S.3: Overall product distribution from cellulose and poplar on % carbon in feed basis (data as shown in Figure 2) and estimated hydrogen consumption

	Cellulose	Poplar
Carbon / wt%	80.9	76.3
Hydrogen / wt%	3.6	3.7

Table S.4: Carbon and hydrogen contents of char from cellulose and poplar experiments

 Table S.5: Carbon, hydrogen and water contents of aqueous phase products from cellulose and poplar experiments

	Cellulose	Poplar
Carbon / wt%	2.2	1.1
Hydrogen / wt%	11.3	11.8
Water / wt%	91.2	97.2

Figure S.1: Comparison of product distribution (% non-char carbon basis) from HDO of cellulose fast-hydropyrolysis vapors as a function of HDO temperature. Process conditions: $P_{H_2}=25$ bar, $P_{N_2}=2$ bar, $P_{total}=27$ bar, fast-hydropyrolysis=480°C

Catalyst Characterization

CO chemisorption was performed to quantify CO uptake for the 5wt%Pt-2.5wt%Mo/MWCNT catalyst. ~124 mg of the fresh, as-prepared and reduced, catalyst was loaded into a Micromeritics ASAP 2020 instrument. The catalyst was degassed and reduced *in situ*, in H₂ flow, with a temperature ramp to 450 °C in 2 hours and held at 450 °C for 2 hours, similar to the *in situ* catalyst reduction procedure used in the HDO reactor before the start of the experiments. The catalyst was then evacuated at 450°C for 2 hours and a leak test was performed at 35°C, to ensure that the pressure increase rate, due to sample outgassing, was less than 10 μ mHg min⁻¹. The CO uptake analysis was performed at 35°C and in a pressure range of 200 mmHg to 400 mmHg.

The CO uptake value for the 5wt%Pt-2.5wt%Mo/MWCNT catalyst was ~67 μ mol g⁻¹ and the corresponding isotherm is shown in Figure S.2.

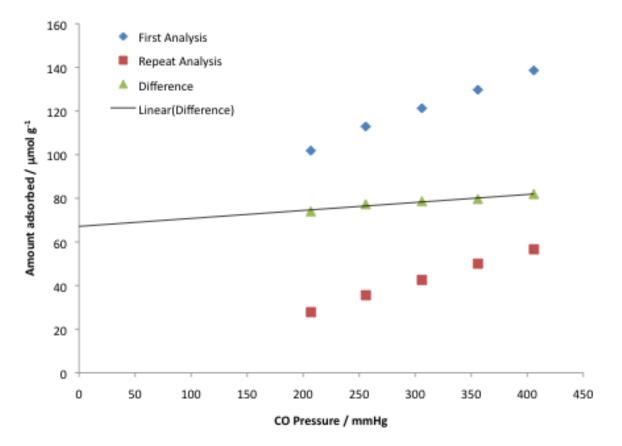


Figure S.2: CO chemisorption isotherm

References

1. M. H. Studer, S. Brethauer, J. D. DeMartini, H. L. McKenzie and C. E. Wyman, *Biotechnol. Biofuels*, 2011, 4, 19.