Electronic Supplementary Material (ESI) for Green Chemistry. This journal is © The Royal Society of Chemistry 2014

Electronic supplementary information

Upgrading of Glycerol Acetals through Thermal Catalyst-free Transesterification of Dialkyl Carbonates under Continuous-Flow Conditions

Maurizio Selva,* Sandro Guidi, and Marco Noè

Department of Molecular Sciences and Nanosystems, Centre for Sustainable Technologies, Università Ca' Foscari Venezia Calle Larga S. Marta, 2137 – 30123 Venezia (Italy) e-mail: <u>selva@unive.it</u>

Contents

Synthesis of DBnC	S3
GC calibration curve	
¹ H NMR of mixture product 2a+2a'	S4
¹³ C NMR of mixture product 2a+2a'	S4
GC/MS of product 2a	S5
GC/MS of product 2a'	S5
¹ H NMR of product 2b	S6
¹³ C NMR of product 2b	S6
GC/MS of product 2b	S7
¹ H NMR of mixture product 3a+3a'	S7
¹³ C NMR of mixture product 3a+3a'	S8
GC/MS of product 3a	S8
MS spectra of product 3a'	S9
1H NMR of product 3b	S9
¹³ C NMR of product 3b	S10
GC/MS of product 3b	S10
¹ H NMR of product 6a	S11
¹³ C NMR of product 6a	S11
GC/MS of product 6a	S12
¹ H NMR of product 6a'	S12
¹³ C NMR of product 6a'	\$13
¹ H- ¹ H DQFCOSY of product 6a'	\$13
¹ H- ¹³ C HMQC of product 6a'	S14
¹ H- ¹³ C HMBC of product 6a'	S14
 ¹H NMR of product 6a' ¹³C NMR of product 6a' ¹H-¹H DQFCOSY of product 6a' ¹H-¹³C HMQC of product 6a' ¹H-¹³C HMBC of product 6a' 	

¹ H- ¹ H NOESY sof product 6a'	S15
GC/MS spectra of product 6a'	S15
GC/MS spectra of product 4a	S16
GC/MS spectra of product 4a'	S16
GC/MS spectra of product 5a	S17
GC/MS spectra of product 5a'	S17
References	S18

Synthesis of DBnC

Dibenzyl carbonate (DBnC) was prepared via a single step transesterification procedure recently reported by us.¹ Accordingly, a mixture of benzyl alcohol (502,86 mmol, 52 mL), dimethyl carbonate DMC (49.84 mmol, 4.2 mL), and CsF/ α -Al₂O₃ as a catalyst (0.01 molar equiv. with respect to DMC) was set to react at 90 °C. DBnC was isolated as a white solid (77%) with a very high purity (>99% by GC/MS).

GC calibration curve

A GC calibration curve for GlyF was obtained using *n*-tetradecane (C_{14}) as external standard. Four different solutions of commercial GlyF [mixtures of isomers 5-hydroxy-1,3-dioxane (**1a**) and (1,3-dioxolan-4-yl)methanol (**1a'**) in a ~3:2 ratio] in ethyl acetate were prepared at 0.08, 0.06, 0.04 and 0.02 M concentration. In particular 406, 302, 207 and 101 mg of **1a+1a'** were used. To each solution, the same quantity of *n*-tetradecane was added. Figure S 1 shows the results of the calibration test.

Figure S 1: Calibration curve for GlyF. *n*-tetradecane (C_{14}) was used as a standard. A_{GlyF}/A_{C14} was the ratio of GC area responses of GlyF and C₁₄.

¹H NMR of the mixture of isomers 1,3-dioxan-5-yl methyl carbonate (2a) and (1,3-dioxolan-4-yl)methyl methyl carbonate (2a').

Figure S 2: ¹H NMR spectra of mixture product 2a+2a'

¹H NMR (CDCl₃, 400MHz) δ (ppm): 5.04 (s, 1H), 4.89 (m, 2H), 4.81 (d, *J* = 6.2 Hz, 1H), 4.59 (m, 1H), 4.30 (qnt, 1H), 4.25 – 4.13 (m, 2H), 4.07 – 3.92 (m, 5H), 3.80 (s, 3H), 3.79 (s, 3H), 3.73 (dd, *J* = 8.5, 5.4 Hz, 1H).

¹³C NMR of the mixture of product 2a and 2a'

Figure S 3: ¹³C NMR spectra of mixture product 2a+2a'

 ^{13}C NMR (CDCl_3, 100MHz) δ (ppm): 155.5 , 155.1 , 95.4 , 93.5 , 72.8 , 68.8 , 68.1 , 67.2 , 66.6 , 54.9.

GC/MS spectrum of product 2a

Figure S 4: MS spectra of product 2a

GC/MS (relative intensity, 70eV) *m*/*z*: 162 (M⁺, <1%), 161 ([M-H]⁺, 6), 132 (10), 102 (100), 86 (63), 59 (38), 58 (60), 57 (30), 55 (15), 45 (44), 44 (12), 43 (42).

GC/MS spectrum of product 2a'

Figure S 5: MS spectra of product 2a'

GC/MS (relative intensity, 70eV) *m*/*z*: 162 (M⁺, <1%), 161 ([M-H]⁺, 8), 103 (32), 86 (61), 77 (25), 73 (100), 59 (38), 58 (23), 57 (40), 45 (92), 44 (35), 43 (23).

Figure S 6: ¹H NMR spectra of product 2b

¹H NMR (CDCl₃, 400MHz) δ (ppm): 4.38 – 4.29 (m, 1H), 4.19 – 4.15 (m, 2H), 4.08 (dd, *J* = 8.6, 6.4 Hz, 1H), 3.81 – 3.75 (m, 4H), 1.43 (s, 3H), 1.36 (s, 3H).

¹³C NMR of product 2b

Figure S 7: ¹³C NMR spectra of product 2b

 ^{13}C NMR (CDCl_3, 100MHz) δ (ppm): 155.5 , 109.8 , 73.2 , 67.9 , 66.2 , 54.9 , 26.6 , 25.2.

GC/MS spectrum of product 2b

Figure S 8: MS spectra of product 2b

GC/MS (relative intensity, 70eV) *m*/*z*: 190 (M⁺, <1%), 175 (50), 101 (17), 73 (10), 72 (11), 71 (19), 59 (31), 57 (14), 43 (100), 42 (12), 41 (19).

¹H NMR of the mixture of isomers 1,3-Dioxan-5-yl ethyl carbonate (3a) and (1,3-dioxolan-4-yl)methyl ethyl carbonate (3a').

Figure S 9: ¹H NMR spectra of mixture product 3a+3a'

¹H NMR (CDCl₃, 400MHz) δ (ppm): 5.0 (s, 1H), 4.9 – 4.9 (m, 2H), 4.8 (d, *J* = 6.2 Hz, 1H), 4.6 (m, 1H), 4.3 (qnt, 1H), 4.3 – 4.1 (m, 6H), 4.1 – 3.9 (m, 5H), 3.7 (dd, *J* = 8.5, 5.4 Hz, 1H), 1.3 (dt, *J* = 7.1, 3.3 Hz, 6H).

Figure S 10: ¹³C NMR spectra of mixture product 3a+3a'

 ^{13}C NMR (CDCl_3, 100MHz) δ (ppm): 154.7 , 154.3 , 95.2 , 93.3 , 72.7 , 68.4 , 68.0 , 66.8 , 66.4 , 64.1 , 14.0 , 13.9.

GC/MS spectrum of product 3a

Figure S 11: MS spectra of product 3a

GC/MS (relative intensity, 70eV) *m/z*: 176 (M⁺,<1%), 175 ([M-H]⁺, 1), 116 (14), 86 (34), 57 (28), 55 (12), 45 (32), 44 (100), 43 (31).

Figure S 12: MS spectra of product 3a'

GC/MS (relative intensity, 70eV) *m*/*z*: 176 (M⁺, <1%), 175 ([M-H]⁺, 2), 91 (10), 89 (11), 86 (38), 73 (57), 58 (21), 57 (42), 45 (100), 44 (42), 43 (29).

Figure S 13: ¹H NMR spectra of product 3b

¹H NMR (CDCl₃, 400MHz) δ (ppm): 4.33 (m, 1H), 4.24 – 4.13 (m, 4H), 4.08 (dd, *J* = 8.5, 6.4 Hz, 1H), 3.78 (dd, *J* = 8.5, 5.8 Hz, 1H), 1.42 (s, 3H), 1.35 (s, 3H), 1.30 (t, *J* = 7.1 Hz, 3H).

Figure S 14: ¹³C NMR spectra of product 3b

 ^{13}C NMR (CDCl_3, 100MHz) δ (ppm): 154.7 , 109.6 , 73.1 , 67.5, 66.0 , 64.0 , 26.4 , 25.1 , 14.0.

GC/MS spectrum of product 3b

Figure S 15: MS spectra of product 3b

GC/MS (relative intensity, 70eV) *m/z*: 204 (M⁺,<1%), 189 (39), 161 (31), 101 (27), 72 (12), 61 (10), 59 (18), 57 (25), 43 (100), 42 (10).

Figure S 16: ¹H NMR spectra of product 6a

¹H NMR (CDCl₃, 400MHz) δ (ppm): 7.5 – 7.3 (m, 5H), 5.2 (s, 1H), 4.9 (d, *J* = 6.2 Hz, 1H), 4.8 (d, *J* = 6.3 Hz, 1H), 4.7 – 4.6 (m, 1H), 4.0 (dd, *J* = 12.1, 2.8 Hz, 1H), 4.0 (dd, *J* = 12.1, 4.3 Hz, 1H).

¹³C NMR of product 6a

Figure S 17: ¹³C NMR spectra of product 6a

 ^{13}C NMR (CDCl_3, 100MHz) δ (ppm): 154.3, 140.8, 134.7, 128.4, 128.2, 93.4, 69.8, 68.8, 68.0.

GC/MS spectrum of product 6a

Figure S 18: MS spectra of product 6a

GC/MS (relative intensity, 70eV) *m*/*z*: 238 (M⁺, 1%), 107 (15), 92 (10), 91(100), 77 (10), 65 (17), 57(10).

¹H NMR of (1,3-dioxolan-4-yl)methyl benzyl carbonate 6a'

Figure S 19: ¹H NMR spectra of product 6a'

¹H NMR (400 MHz, CDCl₃) δ (ppm): 7.5 – 7.3 (m, 5H), 5.2 (s, 2H), 5.0 (s, 1H), 4.9 (s, 1H), 4.3 (m, 1H), 4.3 – 4.2 (m, 2H), 4.0 (dd, J = 8.5, 6.7 Hz, 1H), 3.7 (dd, J = 8.5, 5.4 Hz, 1H).

Figure S 20: ¹³C NMR spectra of product 6a'

 ^{13}C NMR (CDCl_3, 100MHz) δ (ppm): 155.0 , 135.1 , 128.7 ,128.7 , 128.5 , 95.6 , 73.0 , 70.0 , 67.4 , 66.8 .

¹H-¹H DQFCOSY of product 6a'

Figure S 21: 1H-1H DQFCOSY spectra of product 6a'

Figure S 22: ¹H-¹³C HMQC spectra of product 6a'

¹H-¹³C HMBC of product 6a'

Figure S 23: ¹H-¹³C HMBC spectra of product 6a'

GC/MS of product 6a'

GC/MS (relative intensity, 70eV) *m/z*: 238 (M⁺, <1%), 147(17), 107(17), 92 (18), 91(100), 79 (10), 77 (15), 73 (11), 65 (19), 57 (15), 45 (24).

GC/MS spectrum of product 4a

Figure S 26: MS spectra of product 4a

GC/MS (relative intensity, 70eV) *m*/*z*: 206 (M⁺, <1%), 131 (45), 102 (18), 87 (41), 85 (44), 71 (11), 59 (84), 58 (38), 57 (65), 55 (11), 45 (100), 44 (68), 43 (56), 42 (11), 41 (38), 39 (17).

GC/MS spectrum of product 4a'

Figure S 27: MS spectra of product 4a'

GC/MS (relative intensity, 70eV) *m*/*z*: 206 (M⁺, <1%), 131 (46), 87 (52), 85 (69), 73 (19), 71 (12), 59 (87), 58 (18), 57 (100), 45 (86), 44 (31), 43 (56), 42 (12), 41 (38), 39 (22).

GC/MS spectrum of product 5a

Figure S 28: MS spectra of product 5a

GC/MS (relative intensity, 70eV) *m/z*: 206 (M⁺, <1%), 131 (27), 87 (50), 85 (39), 73 (12), 59 (71), 58 (70), 57 (77), 45 (100), 44 (30), 43 (54), 42 (13), 41 (29), 39 (18).

GC/MS spectrum of product 5a'

Figure S 29: MS spectra of product 5a'

GC/MS (relative intensity, 70eV) *m/z*: 206 (M⁺, <1%), 117 (12), 88 (15), 87 (24), 75 (13), 73 (27), 72 (10), 71 (10), 59 (59), 58 (19), 57 (45), 45 (100), 44 (25), 43 39), 42 (10), 41 (21), 39 (12).

References

- 1. G. Fiorani, M. Selva, *RSC Advances*, 2014, **4**, 1929-1937.
- 2. M. Selva, C. A. Marques and P. Tundo, J. Chem. Soc., Perkin Trans. 1, 1995, 1889-1893.