Conversion of Biomass Derived Valerolactone into

High Octane Number Gasoline with Ionic Liquid

Jiayu Xin, Dongxia Yan, Olubunmi Ayodele, Zhan Zhang , Xingmei Lu, Suojiang Zhang*

^a Beijing Key Laboratory of Ionic Liquids Clean Process, State Key Laboratory of Multiphase Complex System Institute of Process Engineering, Chinese Academy of Sciences

Institute of Process Engineering, Chinese Academy of Sciences Zhongguancun, Beiertiao, Haidian, Beijing 100190 (China) Fax: (+86) 10-8262-7080 E-mail: sjzhang@ipe.ac.cn

Contents

	Page
Materials and Methods	3
Figure S1	4
Figure S2	5
Figure S3	6
Figure S4	7
Figure S5	8
Table S1	9
Table S2	10
Table S3	11
Table S4	12
Table S5	13

Materials and methods

Preparation of Pd/C

Palladium catalyst was prepared by impregnation on the carbon support with a 0.047 M solution of H_2PdCl_4 . Activated carbon was coped with 30 % HNO₃ before use. According to theoretical calculations, a certain amount of chloride precursor (H_2PdCl_4) was added into 3.0 g activated carbon dropwise which mixed with 60 ml distilled water at 60 °C, For deposition, aqueous Na₂CO₃ solution (2 mol/L) was added to the impregnating solution in order to maintain constant pH. After stirred for 8 h, the reduction was performed in liquid phase using formaldehyde at 80 °C for 2 h. Then, the catalyst was washed with 80 °C distilled water and dried at vacuum oven for 18 h.

Preparation of Pd/ZSM-8

ZSM-8 was purchased from J&K Scientific Ltd. and calcined at 600 °C for 4 h. Then the ZSM-8 was subjected to ion-exchange treatment at 60 °C using 1 mol/L ammonium nitrate with volume ratio of ammonium salt solution and zeolite of 6:1. Then ZSM-8 is washed with deionized water for 3 times and dried at 120 °C over night, and calcined at 500 °C for 5 h to obtain hydrogenous zeolite. After hole-processed at 60 °C for 3 hours using 1 mol/L hydrochloric acid, washed with deionized water, dried at 120 °C for 12 h, and calcined at 500 °C for 3 h, the ZSM-8 was then contacted with H₂PdCl₄ with aqueous Na₂CO₃ solution (2 mol/L) as a precipitating agent. The solid is washed with deionized water until no chloride ions are present, dried at 120 °C over night and calcined at 600 °C for 4 in a muffle furnace.

Hydrogenation of 1-butene and 2-butene with Pd/C

Hydrogenation was performed in a 100 ml stirred stainless steel reactor. Reaction temperature was maintained by placing the reactor in a heating coat. Butene was firstly pumped into the reactor by a syringe pump, after reached the designed temperature, H_2 was pumped and maintained with designed reaction time.

Isomerization of *n*-butane to isobutane

Conversion of *n*-butane to isobutane is carried out in a fixed bed reactor using extrusionmolded catalyst at 350 and 380 degrees C, 0.3-3 MPa, and 0.5-20 hour-1, moving bed reactor using catalyst pellets at 150-600 °C, 0.3 MPa, and WHSV of 1 h⁻¹.

Figure S1. XRD pattern of SiO₂/Al₂O₃ catalyst

Figure S2. FT-IR spectrum of SiO₂/Al₂O₃ catalyst

Figure S3. NH₃-TPD profiles of SiO₂/Al₂O₃ catalyst

Figure S4. SEM image of SiO₂/Al₂O₃ catalyst

Figure S5. FT-IR spectrum of CF₃CH₂OH and [CF₃CH₂OH₂][CF₃CH₂OBF₃]

catalyst			
BET Surface Area (m ² /g)	Pore Volume (cm ³ /g)	Pore Size (nm)	Nanoparticle Size (nm)
476.9	0.57	4.8	12.6

Table S1. Low temperature physical adsorption–desorption of nitrogen by SiO₂/Al₂O₃ catalyst

Entry	Reactant	H ₂ pressure (MPa)	Time (h)	Temp.(°C)	Yield of n-butane (%)
1	1-butene	5	2	180	>99
2	2-butene	5	2	180	>99
3	1-butene	2	2	120	97
4	2-butene	2	2	120	98

Table S2. Hydrogenation of 1-butene and 2-butene over Pd/C

Conditions: 100 ml batch type reactor, 5 ml compressed (liquefied at room temperature) butene reactant, 0.1 g catalyst, with continuous stirring at 600 rpm; the products were analyzed by GC-FID.

Table S3. Isomerization of n-butane over Pd/ZSM-8

Entry	Reactant	H ₂ pressure (MPa)	Temp.(°C)	Isobutane (%)
1	<i>n</i> -butane	0.3	350	55
2	<i>n</i> -butane	0.3	380	62

Conditions: fixed-bed reactor, 1 g catalyst, WHSV, 1 h⁻¹; the products were analyzed by GC-FID.

Table S4. Reusability of [CF₃CH₂OH₂][CF₃CH₂O-BF₃]

		,			L V	-	0 1					
Exp. cycles	1	2	3	4	5	6	7	8	9	10	11	12
Time (min)	10	10	10	10	10	10	10	10	10	10	10	10
Temp.(°C)	10	10	10	10	10	10	10	10	10	10	10	10
C5 (%)	1	2	1	2	2	1	2	2	1	1	1	1
C6 (%)	2	2	2	3	3	3	3	3	3	2	2	2
C7 (%)	2	3	3	4	4	4	4	4	3	3	3	2
C8 (%)	82	78	73	69	63	58	50	49	46	44	41	38
TMP (%)	73	69	64	59	54	48	41	40	39	37	35	32
DMH (%)	9	9	9	10	9	10	9	9	7	6	5	5
TMP/DMH	8	8	7	6	6	5	5	5	6	6	7	6
C9+ (%)	13	14	20	23	28	34	42	42	47	50	54	58
RON	95.4	94.9	93.5	92.6	91.6	90.1	88.9	88.9	88.8	88.5	88.0	87.3

No.	Retention time	Carbon number	Compound
1	10.536	C4	isobutane
2	11.979	C5	2-methylbutane
3	14.496	C6	2,3-dimethylbutane
4	14.591	C6	2-methylpentane
5	15.155	C6	3-methylpentane
6	17.289	C7	2,4-dimethylpentane
7	17.684	C7	2,2,3-trimethylbutane
8	19.114	C7	2-methylhexane
9	19.526	C7	2,3-dimethylpentane
10	19.86	C7	3-methylhexane
11	21.035	C8	2,2,4-trimethylpentane
12	23.666	C8	2,5-dimethylhexane
13	23.872	C8	2,4-dimethylhexane
14	23.999	C8	2,2,3-trimethylpentane
15	25.29	C8	2,3,4-trimethylpentane
16	25.787	C8	2,3,3-trimethylpentane
17	25.903	C8	2,3-dimethylhexane
18	26.015	C8	3-ethyl-2-methylpentane
19	26.122	C8	2-methylheptane
20	26.25	C8	4-methylheptane
21	26.527	C8	3,4-dimethylhexane
22	26.699	C8	3-methylheptane
23	27.778	C9	2,2,5-trimethylhexane
24	27.778+	C9+	

Table S5. Detected compounds produced by alkylation of butenes (1-butene and 2-butene) and isobutane by GC-Fid