Supporting Information For

Renewable Thermosetting Resins and Thermoplastics from Vanillin

Benjamin G. Harvey^a*, Andrew J. Guenthner^b, Heather A. Meylemans^a, Shannon R. L. Haines^a, Kevin Lamison^c, Thomas J. Groshens^a, Lee R. Cambrea^a, Matthew C. Davis^a, and William W. Lai^a

- a. US NAVY, NAWCWD, Research Department, Chemistry Division, China Lake, California 93555
- b. Air Force Research Laboratory, Rocket Propulsion Division, Edwards AFB, California 93524
- c. ERC, Inc., Air Force Research Laboratory, Rocket Propulsion Division, Edwards AFB, California 93524

Contents

	Page
X-ray data collection for compound 6	S2
Table S1. Sample and crystal data for 6	S2
Table S2. Data collection and structure refinement for 6	S3
Table S3. Bond lengths (Å) for 6	S3
Table S4. Bond angles (°) for 6	S4
X-ray data collection for compound 7	S5
Table S5. Sample and crystal data for 7	S5
Table S6. Data collection and structure refinement for 7	S6
Table S7. Bond lengths (Å) for 7	S7
Table S8. Bond angles (°) for 7	S7
Figure S1. ¹ H NMR spectrum of 6 in DMF- <i>d</i> 7	S8
Figure S2. ¹ H NMR spectrum of 7 in DMSO- <i>d</i> ₆	S8
Figure S3. ¹ H NMR spectrum (CDCl ₃) of the polycarbonate derived from compound 5.	S9
Figure S4. Gas phase IR data of polycarbonate decomposition products	S9

X-ray data collection for compound 6. A specimen of **6**, with approximate dimensions 0.092 mm x 0.138 mm x 0.272 mm, was used for the X-ray crystallographic analysis. The X-ray intensity data were measured.

The total exposure time was 12.20 hours. The frames were integrated with the Bruker SAINT software package using a narrow-frame algorithm. The integration of the data using a monoclinic unit cell yielded a total of 8100 reflections to a maximum θ angle of 25.00° (0.84 Å resolution), of which 1354 were independent (average redundancy 5.982, completeness = 100.1%, R_{int} = 2.86%) and 966 (71.34%) were greater than $2\sigma(F^2)$. The final cell constants of <u>a</u> = 3.8765(4) Å, <u>b</u> = 12.2303(13) Å, <u>c</u> = 16.1995(18) Å, β = 95.9060(17)°, volume = 763.95(14) Å³, are based upon the refinement of the XYZ-centroids of 1817 reflections above 20 $\sigma(I)$ with 5.056° < 2 θ < 48.36°. Data were corrected for absorption effects using the multi-scan method (SADABS). The ratio of minimum to maximum apparent transmission was 0.920. The calculated minimum and maximum transmission coefficients (based on crystal size) are 0.9730 and 0.9910.

The final anisotropic full-matrix least-squares refinement on F² with 126 variables converged at R1 = 4.06%, for the observed data and wR2 = 10.69% for all data. The goodness-of-fit was 1.033. The largest peak in the final difference electron density synthesis was 0.265 e⁻/Å³ and the largest hole was -0.166 e⁻/Å³ with an RMS deviation of 0.031 e⁻/Å³. On the basis of the final model, the calculated density was 1.401 g/cm³ and F(000), 336 e⁻.

Table S1. Sample and crystal data for 6			
Chemical formula	$C_{18}H_{14}N_2O_4$		
Formula weight	322.31		
Temperature	296(2) K		
Wavelength	0.71073 Å		
Crystal size	0.092 x 0.138 x 0.272	2 mm	
Crystal system	monoclinic		
Space group	P 1 21/c 1		
Unit cell dimensions	a = 3.8765(4) Å	$\alpha = 90^{\circ}$	
	b = 12.2303(13) Å	$\beta = 95.9060(17)^{\circ}$	
	c = 16.1995(18) Å	$\gamma = 90^{\circ}$	
Volume	763.95(14) Å ³		
Z	2		
Density (calculated)	1.401 g/cm ³		
Absorption coefficient	0.101 mm ⁻¹		
F(000)	336		

Table S2. Data collection and structure refinement for 6.			
Theta range for data collection 2.09 to 25.00°			

Index ranges	-4<=h<=4, -14<=k<=14, -19<=l<=19		
Reflections collected	8100		
Independent reflections	1354 [R(int)	= 0.0286]	
Coverage of independent reflections	100.1%		
Absorption correction	multi-scan		
Max. and min. transmission	0.9910 and 0	.9730	
Refinement method	Full-matrix le	east-squares on F ²	
Refinement program	SHELXL-2013 (Sheldrick, 2013)		
Function minimized	$\Sigma w(F_0^2 - F_c^2)^2$		
Data / restraints / parameters	1354 / 0 / 126		
Goodness-of-fit on F ²	1.033		
Final R indices	966 data; I>2σ(I)	R1 = 0.0406, wR2 = 0.0908	
	all data	R1 = 0.0635, wR2 = 0.1069	
Weighting scheme	w=1/[$\sigma^2(F_o^2)$ +(0.0393P) ² +0.2954P] where P=(F_o^2 +2 F_c^2)/3		
Largest diff. peak and hole	0.265 and -0.166 eÅ ⁻³		
R.M.S. deviation from mean	0.031 eÅ ⁻³		

O1-C8	1.286(2)	O1-C4	1.428(2)
O2-C5	1.362(2)	O2-C9	1.427(2)
C1-C2	1.379(3)	C1-C6	1.393(3)
C1-C7	1.473(3)	C2-C3	1.376(3)
C2-H1	0.99(2)	C3-C4	1.363(3)
С3-Н2	0.97(2)	C4-C5	1.385(2)
C5-C6	1.387(3)	С6-Н3	0.921(19)
N1-C8	1.134(3)	C7-C7	1.298(4)
С7-Н4	0.98(3)	С9-Н9А	0.96
C9-H9B	0.96	С9-Н9С	0.96

Table S4. Bond angles (°) for 6

C8-O1-C4	117.22(16)	С5-О2-С9	117.18(16)
C2-C1-C6	118.64(18)	C2-C1-C7	118.33(19)
C6-C1-C7	123.02(19)	C3-C2-C1	121.2(2)
С3-С2-Н1	118.7(14)	С1-С2-Н1	120.0(14)

C4-C3-C2	118.8(2)	С4-С3-Н2	119.2(14)
С2-С3-Н2	122.1(14)	C3-C4-C5	122.70(17)
C3-C4-O1	122.43(17)	C5-C4-O1	114.87(17)
O2-C5-C4	115.96(16)	O2-C5-C6	126.61(18)
C4-C5-C6	117.42(18)	C5-C6-C1	121.23(18)
С5-С6-Н3	116.9(12)	С1-С6-Н3	121.8(12)
C7-C7-C1	127.2(3)	С7-С7-Н4	111.5(16)
С1-С7-Н4	121.1(16)	N1-C8-O1	175.7(2)
О2-С9-Н9А	109.5	O2-C9-H9B	109.5
Н9А-С9-Н9В	109.5	О2-С9-Н9С	109.5
Н9А-С9-Н9С	109.5	Н9В-С9-Н9С	109.5

X-ray data collection for compound 7. A specimen of **7**, approximate dimensions 0.070 mm x 0.195 mm x 0.255 mm, was used for the X-ray crystallographic analysis. The X-ray intensity data were measured.

The total exposure time was 12.20 hours. The frames were integrated with the Bruker SAINT software package using a narrow-frame algorithm. The integration of the data using a monoclinic unit cell yielded a total of 8545 reflections to a maximum θ angle of 25.00° (0.84 Å resolution), of which 1399 were independent (average redundancy 6.108, completeness = 100.0%, R_{int} = 2.62%, R_{sig} = 1.64%) and 1097 (78.41%) were greater than $2\sigma(F^2)$. The final cell constants of <u>a</u> = 4.4010(3) Å, <u>b</u> = 12.3035(9) Å, <u>c</u> = 14.8314(11) Å, β = 97.5930(10)°, volume = 796.04(10) Å³, are based upon the refinement of the XYZ-centroids of 2135 reflections above 20 $\sigma(I)$ with 4.317° < 2 θ < 48.90°. Data were corrected for absorption effects using the multi-scan method (SADABS). The ratio of minimum to maximum apparent transmission was 0.942. The calculated minimum and maximum transmission coefficients (based on crystal size) are 0.9760 and 0.9930.

The structure was solved and refined using the Bruker SHELXTL Software Package, using the space group P 1 21/c 1, with Z = 2 for the formula unit, $C_{18}H_{16}N_2O_4$. The final anisotropic full-matrix least-squares refinement on F² with 110 variables converged at R1 = 3.50%, for the observed data and wR2 = 9.62% for all data. The goodness-of-fit was 1.038. The largest peak in the final difference electron density synthesis was 0.115 e⁻/Å³ and the largest hole was -0.151 e⁻/Å³ with an RMS deviation of 0.029 e⁻/Å³. On the basis of the final model, the calculated density was 1.353 g/cm³ and F(000), 340 e⁻.

Table S5. Sample and crystal data for 7			
Identification code	Compound 7		
Chemical formula	$C_{18}H_{16}N_2O_4$		
Formula weight	324.33		
Temperature	296(2) K		
Wavelength	0.71073 Å		
Crystal size	0.070 x 0.195 x 0.255	mm	
Crystal system	monoclinic		
Space group	P 1 21/c 1		
Unit cell dimensions	a = 4.4010(3) Å	$\alpha = 90^{\circ}$	
	b = 12.3035(9) Å	$\beta = 97.5930(10)^{\circ}$	
	c = 14.8314(11) Å	$\gamma = 90^{\circ}$	
Volume	796.04(10) Å ³		
Z	2		
Density (calculated)	1.353 g/cm ³		
Absorption coefficient	0.097 mm ⁻¹		
F(000)	340		

Table S6. Data collection and structure refinement for 7			
Theta range for data	2.16 to 25.00°		

collection			
Index ranges	-5<=h<=5, -14<=k<=14, -17<=l<=17		
Reflections collected	8545		
Independent reflections	1399 [R(int) = 0.02]	262]	
Coverage of independent reflections	100.0%		
Absorption correction	multi-scan		
Max. and min. transmission	0.9930 and 0.9760		
Structure solution technique	direct methods		
Structure solution program	n SHELXS-97 (Sheldrick, 2008)		
Refinement method	Full-matrix least-squares on F ²		
Refinement program	SHELXL-2013 (SI	heldrick, 2013)	
Function minimized	$\Sigma w(F_0^2 - F_c^2)^2$		
Data / restraints / parameters	1399 / 0 / 110		
Goodness-of-fit on F ²	1.038		
Final R indices	1097 data; I>2σ(I)	R1 = 0.0350, wR2 = 0.0863	
	all data	R1 = 0.0474, wR2 = 0.0962	
Weighting scheme	w=1/[$\sigma^2(F_o^2)$ +(0.04 where P=(F_o^2 +2 F_c^2		
Largest diff. peak and hole	e 0.115 and -0.151 $e^{A^{-3}}$		
R.M.S. deviation from mean	0.029 eÅ ⁻³		

O2-C9	1.2797(18)	O2-C5	1.4282(16)
01-C4	1.3596(17)	O1-C8	1.4257(19)
N1-C9	1.127(2)	C5-C6	1.363(2)
C5-C4	1.3838(19)	C4-C3	1.3845(19)
C3-C2	1.389(2)	С3-Н3	0.93
C2-C7	1.380(2)	C2-C1	1.5114(19)

Table S7. Bond lengths (Å) for 7

C1-C1	1.518(3)	C1-H1	0.97
C1-H2	0.97	C7-C6	1.388(2)
С7-Н5	0.93	C6-H4	0.93
C8-H7	0.96	C8-H8	0.96
C8-H6	0.96		

Table S8. Bond angles (°) for 7

Table S8. Bond angles (*) for 7				
C9-O2-C5	118.70(12)	C4-O1-C8	116.78(12)	
N1-C9-O2	175.05(19)	C6-C5-C4	122.89(13)	
C6-C5-O2	123.16(13)	C4-C5-O2	113.95(13)	
O1-C4-C5	116.35(12)	O1-C4-C3	126.21(13)	
C5-C4-C3	117.44(14)	C4-C3-C2	121.37(13)	
С4-С3-Н3	119.3	С2-С3-Н3	119.3	
C7-C2-C3	118.98(13)	C7-C2-C1	121.60(14)	
C3-C2-C1	119.40(13)	C2-C1-C1	112.95(15)	
C2-C1-H1	109.0	C1-C1-H1	109.0	
С2-С1-Н2	109.0	C1-C1-H2	109.0	
H1-C1-H2	107.8	C2-C7-C6	120.80(14)	
С2-С7-Н5	119.6	С6-С7-Н5	119.6	
C5-C6-C7	118.52(14)	С5-С6-Н4	120.7	
С7-С6-Н4	120.7	O1-C8-H7	109.5	
O1-C8-H8	109.5	Н7-С8-Н8	109.5	
O1-C8-H6	109.5	H7-C8-H6	109.5	
H8-C8-H6	109.5			

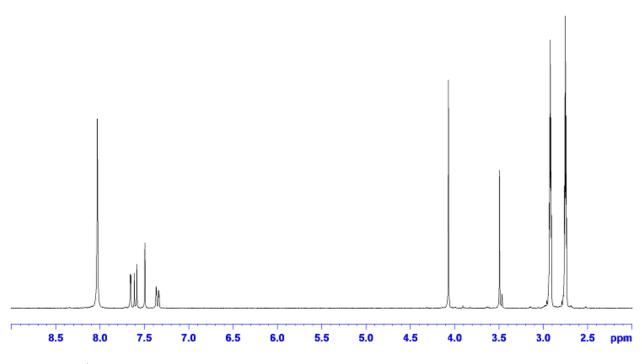


Figure S1. ¹H NMR spectrum of compound 6 in DMF- d_7

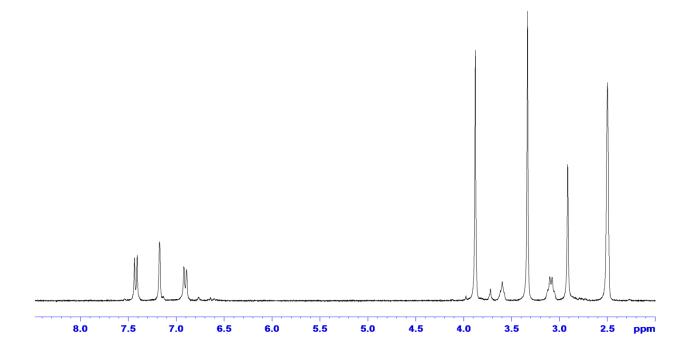


Figure S2. ¹H NMR spectrum of compound 7 in DMSO- d_6 . Due to the very low solubility of compound 7 in common organic solvents including DMSO, the resonances due to impurities are highly exaggerated. For example, THF can be observed at ~3.6 ppm, water (from the NMR solvent) at ~3.3 ppm, and triethylamine hydrochloride at ~3.2 ppm

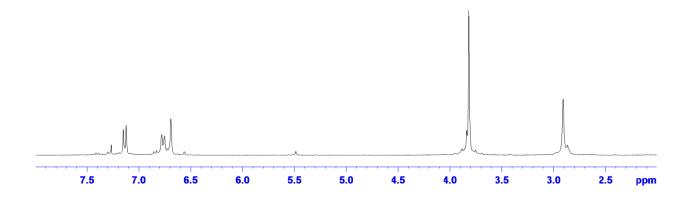


Figure S3. ¹H NMR spectrum (CDCl₃) of the polycarbonate derived from compound 5

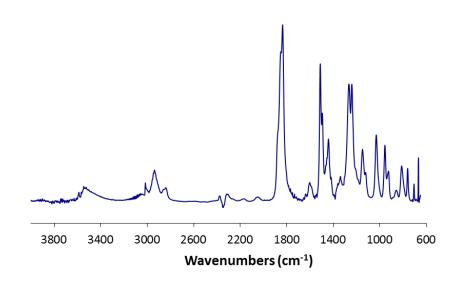


Figure S4. Gas phase IR data of polycarbonate decomposition products