Supporting Information For

 Renewable Thermosetting Resins and Thermoplastics from Vanillin

 Renewable Thermosetting Resins and Thermoplastics from Vanillin}

Benjamin G. Harvey ${ }^{\text {* }}$, Andrew J. Guenthner ${ }^{\text {b }}$, Heather A. Meylemans ${ }^{\text {a }}$, Shannon R. L. Haines ${ }^{\text {a }}$, Kevin
a. US NAVY, NAWCWD, Research Department, Chemistry Division, China Lake, California 93555
b. Air Force Research Laboratory, Rocket Propulsion Division, Edwards AFB, California 93524
c. ERC, Inc., Air Force Research Laboratory, Rocket Propulsion Division, Edwards AFB, California 93524

Contents

Page
X-ray data collection for compound 6 S2
Table S1. Sample and crystal data for 6 S2
Table S2. Data collection and structure refinement for 6 S3
Table S3. Bond lengths (\AA) for 6 S3
Table S4. Bond angles (${ }^{\circ}$) for 6 S4
X-ray data collection for compound 7 S5
Table S5. Sample and crystal data for 7 S5
Table S6. Data collection and structure refinement for 7 S6
Table S7. Bond lengths (\AA) for 7 S7
Table S8. Bond angles $\left(^{\circ}\right.$) for 7 S7
Figure S1. ${ }^{1}$ H NMR spectrum of 6 in DMF- d_{7} S8
Figure S2. ${ }^{1} \mathrm{H}$ NMR spectrum of 7 in DMSO- d_{6} S8
Figure $\mathrm{S} 3 .{ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathrm{CDCl}_{3}\right)$ of the polycarbonate derived from compound 5 S9
Figure S4. Gas phase IR data of polycarbonate decomposition products. S9

X-ray data collection for compound 6. A specimen of 6, with approximate dimensions 0.092 $\mathrm{mm} \times 0.138 \mathrm{~mm} \times 0.272 \mathrm{~mm}$, was used for the X-ray crystallographic analysis. The X-ray intensity data were measured.

The total exposure time was 12.20 hours. The frames were integrated with the Bruker SAINT software package using a narrow-frame algorithm. The integration of the data using a monoclinic unit cell yielded a total of 8100 reflections to a maximum θ angle of $25.00^{\circ}(0.84 \AA$ resolution $)$, of which 1354 were independent (average redundancy 5.982 , completeness $=100.1 \%, \mathrm{R}_{\text {int }}=$ $2.86 \%)$ and $966(71.34 \%)$ were greater than $2 \sigma\left(\mathrm{~F}^{2}\right)$. The final cell constants of $\underline{\mathrm{a}}=3.8765(4) \AA, \underline{b}$ $=12.2303(13) \AA, \underline{\mathrm{c}}=16.1995(18) \AA, \beta=95.9060(17)^{\circ}$, volume $=763.95(14) \bar{\AA}^{3}$, are based upon the refinement of the XYZ-centroids of 1817 reflections above $20 \sigma(\mathrm{I})$ with $5.056^{\circ}<2 \theta<$ 48.36°. Data were corrected for absorption effects using the multi-scan method (SADABS). The ratio of minimum to maximum apparent transmission was 0.920 . The calculated minimum and maximum transmission coefficients (based on crystal size) are 0.9730 and 0.9910 .

The final anisotropic full-matrix least-squares refinement on F^{2} with 126 variables converged at $\mathrm{R} 1=4.06 \%$, for the observed data and $\mathrm{wR} 2=10.69 \%$ for all data. The goodness-of-fit was 1.033. The largest peak in the final difference electron density synthesis was $0.265 \mathrm{e}^{-} / \AA^{3}$ and the largest hole was $-0.166 \mathrm{e}^{-} / \AA^{3}$ with an RMS deviation of $0.031 \mathrm{e}^{-} / \AA^{3}$. On the basis of the final model, the calculated density was $1.401 \mathrm{~g} / \mathrm{cm}^{3}$ and $\mathrm{F}(000), 336 \mathrm{e}^{-}$.

Table S1. Sample and crystal data for 6

Chemical formula	$\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{4}$	
Formula weight	322.31	
Temperature	$296(2) \mathrm{K}$	
Wavelength	$0.71073 \AA$	
Crystal size	$0.092 \times 0.138 \times 0.272 \mathrm{~mm}$	
Crystal system	monoclinic	
Space group	$\mathrm{P} 121 / \mathrm{c} 1$	
Unit cell dimensions	$\mathrm{a}=3.8765(4) \AA$	$\alpha=90^{\circ}$
	$\mathrm{b}=12.2303(13) \AA \quad \beta=95.9060(17)^{\circ}$	
	$\mathrm{c}=16.1995(18) \AA \quad \gamma=90^{\circ}$	
Volume	$763.95(14) \AA^{3}$	
Z	2	
Density (calculated)	$1.401 \mathrm{~g} / \mathrm{cm}^{3}$	
Absorption coefficient	$0.101 \mathrm{~mm}^{-1}$	
F(000)	336	

Table S2. Data collection and structure refinement for 6.
Theta range for data collection 2.09 to 25.00°

Index ranges	$-4<=\mathrm{h}<=4,-14<=\mathrm{k}<=14,-19<=1<=19$
Reflections collected	8100
Independent reflections	$1354[\mathrm{R}(\mathrm{int})=0.0286]$
Coverage of independent reflections	100.1\%
Absorption correction	multi-scan
Max. and min. transmission	0.9910 and 0.9730
Refinement method	Full-matrix least-squares on F^{2}
Refinement program	SHELXL-2013 (Sheldrick, 2013)
Function minimized	$\Sigma \mathrm{w}\left(\mathrm{F}_{\mathrm{o}}{ }^{2}-\mathrm{F}_{\mathrm{c}}{ }^{2}\right)^{2}$
Data / restraints / parameters	1354/0/126
Goodness-of-fit on $\mathbf{F}^{\mathbf{2}}$	1.033
Final R indices	$\begin{array}{ll} 966 \text { data; } & \mathrm{R} 1=0.0406, \text { wR2 }= \\ \mathrm{I}>2 \sigma(\mathrm{I}) & 0.0908 \end{array}$
	$\begin{array}{ll} \text { all data } & \mathrm{R} 1=0.0635, \mathrm{wR} 2= \\ & 0.1069 \end{array}$
Weighting scheme	$\begin{aligned} & \mathrm{w}=1 /\left[\sigma^{2}\left(\mathrm{~F}_{\mathrm{o}}^{2}\right)+(0.0393 \mathrm{P})^{2}+0.2954 \mathrm{P}\right] \\ & \text { where } \mathrm{P}=\left(\mathrm{F}_{\mathrm{o}}^{2}+2 \mathrm{~F}_{\mathrm{c}}^{2}\right) / 3 \end{aligned}$
Largest diff. peak and hole	0.265 and $-0.166 \mathrm{e}^{-3}$
R.M.S. deviation from mean	$0.031 \mathrm{e}^{\text {® }}$ - ${ }^{\text {d }}$

Table S3. Bond lengths (\AA) for 6

O1-C8	$1.286(2)$	O1-C4	$1.428(2)$
O2-C5	$1.362(2)$	O2-C9	$1.427(2)$
C1-C2	$1.379(3)$	C1-C6	$1.393(3)$
C1-C7	$1.473(3)$	C2-C3	$1.376(3)$
C2-H1	$0.99(2)$	C3-C4	$1.363(3)$
C3-H2	$0.97(2)$	C4-C5	$1.385(2)$
C5-C6	$1.387(3)$	C6-H3	$0.921(19)$
N1-C8	$1.134(3)$	C7-C7	$1.298(4)$
C7-H4	$0.98(3)$	C9-H9A	0.96
C9-H9B	0.96	C9-H9C	0.96

Table S4. Bond angles $\left({ }^{\circ}\right)$ for 6

C8-O1-C4	$117.22(16)$	C5-O2-C9	$117.18(16)$
C2-C1-C6	$118.64(18)$	C2-C1-C7	$118.33(19)$
C6-C1-C7	$123.02(19)$	C3-C2-C1	$121.2(2)$
C3-C2-H1	$118.7(14)$	C1-C2-H1	$120.0(14)$

C4-C3-C2	$118.8(2)$	C4-C3-H2	$119.2(14)$
C2-C3-H2	$122.1(14)$	C3-C4-C5	$122.70(17)$
C3-C4-O1	$122.43(17)$	C5-C4-O1	$114.87(17)$
O2-C5-C4	$115.96(16)$	O2-C5-C6	$126.61(18)$
C4-C5-C6	$117.42(18)$	C5-C6-C1	$121.23(18)$
C5-C6-H3	$116.9(12)$	C1-C6-H3	$121.8(12)$
C7-C7-C1	$127.2(3)$	C7-C7-H4	$111.5(16)$
C1-C7-H4	$121.1(16)$	N1-C8-O1	$175.7(2)$
O2-C9-H9A	109.5	O2-C9-H9B	109.5
H9A-C9-H9B	109.5	O2-C9-H9C	109.5
H9A-C9-H9C	109.5	H9B-C9-H9C	109.5

X-ray data collection for compound 7. A specimen of 7, approximate dimensions 0.070 mm x $0.195 \mathrm{~mm} \times 0.255 \mathrm{~mm}$, was used for the X-ray crystallographic analysis. The X-ray intensity data were measured.

The total exposure time was 12.20 hours. The frames were integrated with the Bruker SAINT software package using a narrow-frame algorithm. The integration of the data using a monoclinic unit cell yielded a total of 8545 reflections to a maximum θ angle of $25.00^{\circ}(0.84 \AA$ resolution $)$, of which 1399 were independent (average redundancy 6.108 , completeness $=100.0 \%, \mathrm{R}_{\text {int }}=$ $\left.2.62 \%, \mathrm{R}_{\text {sig }}=1.64 \%\right)$ and $1097(78.41 \%)$ were greater than $2 \sigma\left(\mathrm{~F}^{2}\right)$. The final cell constants of $\underline{a}=$ $4.4010(3) \AA, \underline{b}=12.3035(9) \AA, \underline{c}=14.8314(11) \AA, \beta=97.5930(10)^{\circ}$, volume $=796.04(10) \AA^{3}$, are based upon the refinement of the XYZ-centroids of 2135 reflections above $20 \sigma(\mathrm{I})$ with $4.317^{\circ}<2 \theta<48.90^{\circ}$. Data were corrected for absorption effects using the multi-scan method (SADABS). The ratio of minimum to maximum apparent transmission was 0.942 . The calculated minimum and maximum transmission coefficients (based on crystal size) are 0.9760 and 0.9930 .

The structure was solved and refined using the Bruker SHELXTL Software Package, using the space group P $121 / \mathrm{c} 1$, with $\mathrm{Z}=2$ for the formula unit, $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{4}$. The final anisotropic fullmatrix least-squares refinement on F^{2} with 110 variables converged at $\mathrm{R} 1=3.50 \%$, for the observed data and $\mathrm{wR} 2=9.62 \%$ for all data. The goodness-of-fit was 1.038 . The largest peak in the final difference electron density synthesis was $0.115 \mathrm{e}^{-} / \AA^{3}$ and the largest hole was $-0.151 \mathrm{e}^{-}$ $/ \AA^{3}$ with an RMS deviation of $0.029 \mathrm{e}^{-} / \AA^{3}$. On the basis of the final model, the calculated density was $1.353 \mathrm{~g} / \mathrm{cm}^{3}$ and $\mathrm{F}(000), 340 \mathrm{e}^{-}$.

Table S5. Sample and crystal data for 7		
Identification code	Compound 7	
Chemical formula	$\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{4}$	
Formula weight	324.33	
Temperature	$296(2) \mathrm{K}$	
Wavelength	$0.71073 \AA$	
Crystal size	$0.070 \times 0.195 \times 0.255 \mathrm{~mm}$	
Crystal system	monoclinic	
Space group	$\mathrm{P} 121 / \mathrm{c} 1$	
Unit cell dimensions	$\mathrm{a}=4.4010(3) \AA$	$\alpha=90^{\circ}$
	$\mathrm{b}=12.3035(9) \AA$	$\beta=97.5930(10)^{\circ}$
	$\mathrm{c}=14.8314(11) \AA$	$\gamma=90^{\circ}$
Volume	$796.04(10) \AA^{3}$	
Z	2	
Density (calculated)	$1.353 \mathrm{~g} / \mathrm{cm}^{3}$	
Absorption coefficient	$0.097 \mathrm{~mm}^{-1}$	
F(000)	340	

Table S6. Data collection and structure refinement for 7
Theta range for data $\quad 2.16$ to 25.00°
collection

Index ranges
Reflections collected
Independent reflections
Coverage of independent reflections
Absorption correction multi-scan
Max. and min. transmission 0.9930 and 0.9760
Structure solution direct methods
technique
technique
Structure solution program SHELXS-97 (Sheldrick, 2008)
Refinement method Full-matrix least-squares on F^{2}
Refinement program SHELXL-2013 (Sheldrick, 2013)
Function minimized $\quad \Sigma \mathrm{w}\left(\mathrm{F}_{\mathrm{o}}{ }^{2}-\mathrm{F}_{\mathrm{c}}{ }^{2}\right)^{2}$
Data / restraints /
parameters
Goodness-of-fit on $\mathbf{F}^{\mathbf{2}} \quad 1.038$
Final R indices

Weighting scheme
Largest diff. peak and hole 0.115 and $-0.151 \mathrm{e}^{\AA} \AA^{-3}$
R.M.S. deviation from mean
where $\mathrm{P}=\left(\mathrm{F}_{\mathrm{o}}{ }^{2}+2 \mathrm{~F}_{\mathrm{c}}{ }^{2}\right) / 3$
$-5<=\mathrm{h}<=5,-14<=\mathrm{k}<=14,-17<=1<=17$
8545
$1399[\mathrm{R}(\mathrm{int})=0.0262]$
100.0\%

1399/0/110

1097 data; $\mathrm{I}>2 \sigma(\mathrm{I}) \begin{aligned} & \mathrm{R} 1=0.0350, \mathrm{wR} 2= \\ & 0.0863\end{aligned}$ $\mathrm{R} 1=0.0474, \mathrm{wR} 2=$
$\begin{array}{ll}\text { all data } & \mathrm{R} 1=0.0 \\ & 0.0962\end{array}$
$\mathrm{w}=1 /\left[\sigma^{2}\left(\mathrm{~F}_{\mathrm{o}}{ }^{2}\right)+(0.0423 \mathrm{P})^{2}+0.1584 \mathrm{P}\right]$
where $\mathrm{P}=\left(\mathrm{F}_{\mathrm{o}}{ }^{2}+2 \mathrm{~F}_{\mathrm{c}}{ }^{2}\right) / 3$
0.115 and $-0.151 \mathrm{e}^{-3}{ }^{-3}$
$0.029 \mathrm{e}^{-3}$

O2-C9	$1.2797(18)$	O2-C5	$1.4282(16)$
O1-C4	$1.3596(17)$	O1-C8	$1.4257(19)$
N1-C9	$1.127(2)$	C5-C6	$1.363(2)$
C5-C4	$1.3838(19)$	C4-C3	$1.3845(19)$
C3-C2	$1.389(2)$	C3-H3	0.93
C2-C7	$1.380(2)$	C2-C1	$1.5114(19)$

Table S7. Bond lengths (\AA) for 7

C1-C1	$1.518(3)$	C1-H1	0.97
C1-H2	0.97	C7-C6	$1.388(2)$
C7-H5	0.93	C6-H4	0.93
C8-H7	0.96	C8-H8	0.96
C8-H6	0.96		

Table S8. Bond angles (${ }^{\circ}$) for 7

C9-O2-C5	$118.70(12)$	C4-O1-C8	$116.78(12)$
N1-C9-O2	$175.05(19)$	C6-C5-C4	$122.89(13)$
C6-C5-O2	$123.16(13)$	C4-C5-O2	$113.95(13)$
O1-C4-C5	$116.35(12)$	O1-C4-C3	$126.21(13)$
C5-C4-C3	$117.44(14)$	C4-C3-C2	$121.37(13)$
C4-C3-H3	119.3	C2-C3-H3	119.3
C7-C2-C3	$118.98(13)$	C7-C2-C1	$121.60(14)$
C3-C2-C1	$119.40(13)$	C2-C1-C1	$112.95(15)$
C2-C1-H1	109.0	C1-C1-H1	109.0
C2-C1-H2	109.0	C1-C1-H2	109.0
H1-C1-H2	107.8	C2-C7-C6	$120.80(14)$
C2-C7-H5	119.6	C6-C7-H5	119.6
C5-C6-C7	$118.52(14)$	C5-C6-H4	120.7
C7-C6-H4	120.7	O1-C8-H7	109.5
O1-C8-H8	109.5	H7-C8-H8	109.5
O1-C8-H6	109.5	H7-C8-H6	109.5
H8-C8-H6	109.5		

Figure S1. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 6 in DMF- d_{7}

Figure S2. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 7 in DMSO- d_{6}. Due to the very low solubility of compound 7 in common organic solvents including DMSO, the resonances due to impurities are highly exaggerated. For example, THF can be observed at $\sim 3.6 \mathrm{ppm}$, water (from the NMR solvent) at $\sim 3.3 \mathrm{ppm}$, and triethylamine hydrochloride at $\sim 3.2 \mathrm{ppm}$

Figure $\mathrm{S} 3 .{ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathrm{CDCl}_{3}\right)$ of the polycarbonate derived from compound $\mathbf{5}$

Figure S4. Gas phase IR data of polycarbonate decomposition products

