Supporting Information

Hierarchical micro-/mesoporous N- and O-enriched carbon derived from disposable cashmere: A competitive cost-effective material for high performance electrochemical capacitors

Lu Zhou^{*a*}, Siqi Zhu^{*a*}, Hui Cao^{*a*}, Linrui Hou^{*a*} and Changzhou Yuan **a*, *b*

^a School of Materials Science & Engineering, Anhui University of Technology, Ma'anshan, 243002,

P.R. China

E-mail: ayuancz@163.com

^b Chinese Academy of Science (CAS) Key Laboratory of Materials for Energy Conversion, Hefei, 230026, P.R. China

Fig. S1. Contact angle of the hierarchical CDMMC sample

Fig. S2. Relationship between electrochemically cathodic and anodic redox peak currents and the sweep rate of the hierarchical CDMMC electrode in $1 \text{ M H}_2\text{SO}_4$ electrolyte

Fig. S3. EIS spectra of the CDMMC electrode in three-electrode configurations with (a) 6 M KOH and (b) 1 M H_2SO_4 solutions. The insets in (a, b) for the corresponding high-frequency regions of the EIS spectra, respectively

In general, the intersection of the plots at the X-axis represents solution resistance (R_s), which is associated with the following three items: the resistance of the aqueous solution, the intrinsic resistance of the electroactive material itself, and the contact resistance at the interface between electroactive material and current collector. As observed in **Fig. S3a**, **b**, the values for the R_s in the 6 M KOH and 1 M H₂SO₄ are observed as ~0.56 Ohm and 0.41 Ohm, respectively.

SCs (F g ⁻¹)/		electrochemical	Ref.
discharge current	electrolyte	window	
density (A g ⁻¹)		(V)	
363/0.5	КОН	1.0	This work
460/0.5	H_2SO_4	1.0	This work
220/0.5	KOH	1.0	[1]
319/0.5	KOH	1.0	[2]
340/2.0	КОН	1.0	[3]
280/<1.0	КОН	0.8	[4]
400/0.5	КОН	1.0	[5]
347/0.2	H_2SO_4	1.0	[6]
326	H_2SO_4	1.0	[7]
327/1.0	H_2SO_4	1.0	[8]
300/0.2	H_2SO_4	1.0	[9]
340/0.1	H_2SO_4	1.2	[10]
239/0.5	H_2SO_4	1.0	[11]
243/0.05	КОН	1.0	[12]
	SCs (F g ⁻¹)/ discharge current density (A g ⁻¹) 363/0.5 460/0.5 220/0.5 319/0.5 340/2.0 280/<1.0 400/0.5 347/0.2 326 327/1.0 300/0.2 340/0.1 239/0.5 243/0.05	SCs (F g-1)/ discharge current density (A g-1)electrolyte density (A g-1) $363/0.5$ KOH $460/0.5$ H ₂ SO ₄ $220/0.5$ KOH $319/0.5$ KOH $319/0.5$ KOH $340/2.0$ KOH $280/<1.0$ KOH $400/0.5$ KOH $347/0.2$ H ₂ SO ₄ 326 H ₂ SO ₄ $327/1.0$ H ₂ SO ₄ $300/0.2$ H ₂ SO ₄ $340/0.1$ H ₂ SO ₄ $340/0.5$ H ₂ SO ₄ $340/0.5$ H ₂ SO ₄ $340/0.1$ H ₂ SO ₄ $340/0.5$ H ₂ SO ₄ $239/0.5$ H ₂ SO ₄ $243/0.05$ KOH	SCs (F g ⁻¹)/electrochemicaldischarge currentelectrolytewindowdensity (A g ⁻¹)(V) $363/0.5$ KOH 1.0 $460/0.5$ H ₂ SO ₄ 1.0 $220/0.5$ KOH 1.0 $220/0.5$ KOH 1.0 $319/0.5$ KOH 1.0 $340/2.0$ KOH 1.0 $280/<1.0$ KOH 0.8 $400/0.5$ KOH 1.0 $347/0.2$ H ₂ SO ₄ 1.0 326 H ₂ SO ₄ 1.0 $327/1.0$ H ₂ SO ₄ 1.0 $300/0.2$ H ₂ SO ₄ 1.0 $340/0.1$ H ₂ SO ₄ 1.0 $340/0.1$ H ₂ SO ₄ 1.0 $340/0.5$ KOH 1.0 $340/0.5$ H ₂ SO ₄ 1.0

Table S1. SCs of the CDMMC *vs.* recently published heteroatom-rich carbons all tested in threeelectrode configurations with different electrolytes

[1] G. Y. Xu, B. Ding, P. Nie, L. F. Shen, J. Wang, X. G. Zhang, Chem. Eur. J. 2013, 19, 12306.

[2] L. Qie, W. Chen, H. Xu, X. Xiong, Y. Jiang, F. Zou, X. Hu, Y. Xin, Z. Zhang, Y. Huang, *Energy Environ. Sci.* 2013, 6, 2497

[3] W. J. Qian, F. X. Sun, Y. H. Xun, L. H. Qiu, C. H. Liu, S. D. Wang, F. Yan, *Energy Environ. Sci.* 2014, 7, 379.

[4] H. M. Jeong, J. W. Lee, W. H. Shin, Y. J. Choi, H. J. Shin, J. K. Kang, J. W. Choi, *Nano Lett.***2011**, 11, 2472.

- [5] M. Biswal, A. Banerjee, M. Deo, S. Ogale, Energy Environ. Sci. 2013, 6, 1249.
- [6] Y. Chen, X. O. Zhang, D. C. Zhang, P. Yu, Y. W. Ma, Carbon 2011, 49, 573.
- [7] S. Y. Yang, K. H. Chang, H. W. Tien, Y. F. Lee, S. M. Li, Y. S. Wang, J. Y. Wang, C. C. M.
- Ma, C. C. Hu, J. Mater. Chem. 2011, 21, 2374.
- [8] H. Sun, L. Cao, L. Lu, Energy Environ. Sci. 2012, 5, 6206.
- [9] L. Zhao, L. Z. Fan, M. Q. Zhou, H. Guan, S. Y. Qiao, M. Antonietti, M. M. Titirici, *Adv. Mater.*2010, 22, 5202.
- [10] C. O. Ania, V. Khomenko, E. Raymundo-Pinero, J. B. Parra, F. Beguin, *Adv. Funct. Mater.*2007, 17, 1828.
- [11] T. Bordjiba, M. Mohamedi, L. H. Dao, Adv. Mater. 2008, 20, 815.
- [12] X. J. He, P. H. Ling, M. X. Yu, X. T. Wang, X. Y. Zhang, M. D. Zheng, *Electrochim. Acta* 2013, 105, 635.

Fig. S4. EIS pattern of the CDMMC-based symmetric EC with 1 M TEABF₄/PC electrolyte. The inset for the corresponding high-frequency region of the EIS spectrum