Supporting Information

A Route to Convert CO₂: Synthesis of 3,4,5-Trisubstituted

Oxazolones

Jiayin Hu, Jun Ma*, Zhaofu Zhang, Qinggong Zhu, Huacong Zhou, Wenjing Lu, Buxing Han*

Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China; Tel: (+) 86-10-62562821; E-mail: Majun@iccas.ac.cn; Hanbx@iccas.ac.cn

Contents

1. Experimental	results
-----------------	---------

1.1. Table S1	2
1.2. Figure S1-S4 and Scheme S1	3
1.3. Substances	5
1.4. Intermediate data	9
1.5. Products data	10
2. Theoretical Section	
2.1. Figures S5-S7	13
2.2. Optimized geometries of the transition states	15
3. Reference	22
4. NMR Spectra	23

1. Experimental Results

1.1 Table S1

5

Table S1 Reaction of CO_2 with propargytic annue 1a in various catavists.							
Entry	Catalyst	Conversion ^b /%	Yield ^b /%	Selectivity/%			
1		0	0				
2	Cs ₂ CO ₃	40	4	10			
3	TBD^{c}	>99	22	22			
4	DBU^d	>99	32	32			

Table S1 Reaction of CO₂ with propargylic amine **1a** in various cataylsts.^{*a*}

[Bmim][OAc]

^{*a*} Typical reaction conditions were as follows until otherwise stated: 0.5 mmol of **1a**, 0.05 mmol of catalyst, 0.5 mL solvent of N,N-dimethylformamide, 0.1 MPa CO₂, 100 °C, 2 h. ^{*b*} Conversion and yield were determined by ¹H NMR spectroscopy using 1,3,5-trioxane as an internal standard. ^{*c*} TBD =1,5,7-triazabicyclo[4.4.0]dec-5-ene. ^{*d*} DBU = 1,8-diazabicyclo[5.4.0]undec-7-ene.

>99

45

1.2. Figures S1-S4

Figure S1 Optimization of catalyst amount and temperature

Typical reaction conditions were as follows until otherwise stated: **a**) 0.5 mmol of **1a**, 0.1 MPa CO₂ and different dosage of [Bmim][OAc], 100 °C, 2h. **b**) 0.5 mmol of **1a**, 0.5 mmol of [Bmim][OAc], 0.1 MPa CO₂, different temperatures, 2 h. Yields were determined by ¹H NMR spectroscopy using 1,3,5-trioxane as an internal standard.

Figure S2 Optimization of IL system amount and temperature

Typical reaction conditions were as follows until otherwise stated: **a**) 0.5 mmol of **1a**, 0.5 mmol of [Bmim][Tf₂N] and different dosage of [Bmim][OAc], 0.1 MPa CO₂, 100 °C, 12 h. **b**) 0.5 mmol of **1a**, , 0.25 mmol of [Bmim][OAc] and 0.5 mmol of [Bmim][Tf₂N], 0.1 MPa CO₂, different temperatures, 12 h. Yields were determined by ¹H NMR spectroscopy using 1,3,5-trioxane as an internal standard.

Figure S3 Recyclability of the IL system

Typical reaction conditions were as follows until otherwise stated: 0.5 mmol of **1a**, 0.25 mmol of [Bmim][OAc] and 0.5 mmol of [Bmim][Tf₂N], 0.1 MPa CO₂, 100 °C, 12 h. After the reaction, the product was extracted by diethyl ether and yields were determined by ¹H NMR spectroscopy using 1,3,5-trioxane as an internal standard. The IL mixture was used directly for the next run after drying.

Figure S4 The characteristic peak of chalcone in different reaction

a: the pure chalcone isolated by silica gel column chromatography. b: reaction condition was 0.5 mmol of **1a**, 0.5 mmol of [Bmim][OAc], 0.1 MPa CO₂, 100 °C, 2 h. c: reaction condition was 0.5 mmol of **1a**, 0.25 mmol of [Bmim][OAc] and 0.5 mmol of [Bmim][Tf₂N], 0.1 MPa CO₂, 100 °C, 12 h.

Scheme S1 Possible side reaction.^{S2}

1.3. Substrates

Preparation propargylic amines^{s3}

$$R_{1} \longrightarrow + R_{2} \longrightarrow NH_{2} + R_{3} \longrightarrow CHO \xrightarrow{CuI} R_{1} \longrightarrow R_{1} \longrightarrow R_{3}$$

Data:

Butyl-(1,3-diphenyl-prop-2-ynyl)-amine (1a). pale yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 7.61 (d, J = 7.3 Hz, 2H), 7.48 (dd, J = 6.5, 2.9 Hz, 2H), 7.39 (t, J = 7.5 Hz, 2H), 7.35 to 7.27 (m, 4H), 4.82 (s, 1H), 2.87 (dt, J = 11.2, 7.3 Hz, 1H), 2.74 (dt, J = 11.2, 7.1 Hz, 1H), 1.65 to 1.45 (m, 3H), 1.45 to 1.33 (m, 2H), 0.94 (t, J = 7.3 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 140.70, 131.74, 128.53, 128.27, 128.11, 127.70, 127.61, 123.27, 89.67, 85.27, 54.77, 47.11, 32.17, 20.53, 14.03.

Butyl-[1-(4-methoxy-phenyl)-3-phenyl-prop-2-ynyl]-amine (1b). yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 7.63 to 7.42 (m, 4H), 7.40 to 7.27 (m, 3H), 6.91 (d, *J* = 8.6 Hz, 2H), 4.77 (s, 1H), 3.82 (s, 3H), 2.85 (dt, *J* = 11.2, 7.3 Hz, 1H), 2.72 (dt, *J* = 11.2, 7.1 Hz, 1H), 1.65 to 1.45 (m, 3H), 1.39 (dq, *J* = 14.6, 7.3 Hz, 2H), 0.93 (t, *J* = 7.3 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 159.16, 132.92, 131.72, 128.74, 128.26, 128.06, 123.31, 113.86, 89.91, 85.09, 55.32, 54.15, 47.02, 32.15, 20.55, 14.03.

Butyl-(3-phenyl-1-p-tolyl-prop-2-ynyl)-amine (1c). pale yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 7.51 (dd, J = 8.6, 3.7 Hz, 4H), 7.39 to 7.29 (m, 3H), 7.21 (d, J = 7.8 Hz, 2H), 4.81 (s, 1H), 2.89 (dt, J = 11.3, 7.3 Hz, 1H), 2.75 (dt, J = 11.2, 7.1 Hz, 1H), 2.39 (s, 3H), 1.56 (dt, J = 13.8, 7.1 Hz, 3H), 1.47 to 1.35 (m, 2H), 0.96 (t, J = 7.3 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 137.79, 137.37, 131.75, 129.22, 128.27, 128.07, 127.53, 123.37, 89.91, 85.10, 54.52, 47.10, 32.19, 21.17, 20.57, 14.07.

Butyl-[1-(4-chloro-phenyl)-3-phenyl-prop-2-ynyl]-amine (1d). pale yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 7.57 (d, J = 8.3 Hz, 2H), 7.51 (dd, J = 6.5, 3.0 Hz, 2H), 7.42 to 7.28 (m, 5H), 4.81 (s, 1H), 2.86 (dt, J = 11.2, 7.2 Hz, 1H), 2.74 (dt, J = 11.2, 7.0 Hz, 1H), 1.56 (ddd, J = 15.3, 10.1, 4.6 Hz, 2H), 1.49 to 1.36 (m, 3H), 0.96 (t, J = 7.3 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 139.26, 133.45, 131.77, 129.06, 128.62, 128.36, 128.30, 123.07, 89.18, 85.67, 54.08, 46.99, 32.19, 20.55, 14.07.

Butyl-(1-naphthalen-1-yl-3-phenyl-prop-2-ynyl)-amine (1e). yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 8.45 (d, J = 8.4 Hz, 1H), 8.04 (d, J = 6.9 Hz, 1H), 7.96 (d, J = 8.1 Hz, 1H), 7.90 (d, J = 8.2 Hz, 1H), 7.72 to 7.49 (m, 5H), 7.39 (d, J = 5.0 Hz, 3H), 5.60 (s, 1H), 3.20 to 3.04 (m, 1H), 3.04 to 2.87 (m, 1H), 1.89 to 1.57 (m, 3H), 1.57 to 1.43 (m, 2H), 1.04 (td, J = 7.3, 1.7 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 136.04, 134.26, 131.86, 131.23, 128.92, 128.73, 128.40, 128.22, 126.31, 125.78, 125.45, 125.41, 123.97, 123.44, 89.86, 85.87, 52.47, 47.86, 32.28, 20.70, 14.16.

Butyl-(1-furan-2-yl-3-phenyl-prop-2-ynyl)-amine (**1f**). brown oil; ¹H NMR (400 MHz, CDCl₃) δ 7.47 (dd, J = 6.5, 2.9 Hz, 2H), 7.41 (s, 1H), 7.37 to 7.27 (m, 3H), 6.44 (d, J = 3.1 Hz, 1H), 6.35 (dd, J = 2.9, 1.9 Hz, 1H), 4.91 (s, 1H), 2.91 to 2.67 (m, 2H), 1.65 (s, 1H), 1.59 to 1.44 (m, 2H), 1.44 to 1.31 (m, 2H), 0.92 (t, J = 7.3 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 153.00, 142.42, 131.81, 128.32, 128.28, 122.86, 110.18, 107.36, 87.00, 84.29, 48.62, 46.59, 32.04, 20.49, 14.00.

Butyl-(1-phenyl-3-p-tolyl-prop-2-ynyl)-amine (1g). pale yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 7.64 (d, J = 7.6 Hz, 2H), 7.41 (t, J = 6.8 Hz, 4H), 7.34 (t, J = 7.3 Hz, 1H), 7.15 (d, J = 7.9 Hz, 2H), 4.84 (s, 1H), 2.90 (dt, J = 11.4, 7.3 Hz, 1H), 2.77 (dt, J = 11.3, 7.0 Hz, 1H), 2.38 (s, 3H), 1.70 to 1.50 (m, 3H), 1.43 (dq, J = 14.6, 7.3 Hz, 2H), 0.98 (t, J = 7.3 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 140.85, 138.18, 131.67, 129.07, 128.54, 127.69, 127.67, 120.25, 88.95, 85.43, 54.82, 47.12, 32.21, 21.51, 20.59, 14.09.

(**1,3-Diphenyl-prop-2-ynyl)-(4-phenyl-butyl)-amine (1h).** yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 7.56 (d, *J* = 7.6 Hz, 2H), 7.49 to 7.39 (m, 2H), 7.34 (t, *J* = 7.4 Hz, 2H), 7.30 to 7.18 (m, 6H), 7.13 (d, *J* = 7.6 Hz, 3H), 4.76 (s, 1H), 2.85 (dt, *J* = 11.3, 7.1 Hz, 1H), 2.77 to 2.65 (m, 1H), 2.59 (t, *J* = 7.5 Hz, 2H), 1.75 to 1.61 (m, 2H), 1.55 (dq, *J* = 14.3, 7.0 Hz, 2H), 1.40 (s, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 142.57, 140.72, 131.85, 128.64, 128.57, 128.40, 128.25, 127. 83, 127.73, 125.83, 123.33, 89.73, 85.48, 54.85, 47.28, 35.92, 29.77, 29.34.

Butyl-(1-phenylethynyl-butyl)-amine (1i). yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 7.42 (dd, J = 6.5, 3.0 Hz, 2H), 7.36 to 7.26 (m, 3H), 3.59 (dd, J = 7.7, 5.9 Hz, 1H), 2.93 (ddd, J = 11.1, 8.1, 6.6 Hz, 1H), 2.66 (ddd, J = 11.2, 8.2, 6.0 Hz, 1H), 1.68 (ddd, J = 13.5, 8.4, 6.3 Hz, 2H), 1.63 to 1.46 (m, 4H), 1.38 (dd, J = 15.3, 7.5 Hz, 3H), 0.95 (dt, J = 14.3, 7.3 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 131.66, 128.21, 127.82, 123.52, 91.34, 83.55, 50.64, 47.33, 38.32, 32.25, 20.56, 19.44, 14.03, 13.94.

1.4. Intermediate data:

5-benzylidene-3-butyl-4-phenyloxazolidin-2-one (intermediate of 1a). white solid; ¹H NMR (400 MHz, CDCl₃) δ 7.52 (d, *J* = 7.5 Hz, 2H), 7.48 to 7.40 (m, 3H), 7.38 to 7.31 (m, 2H), 7.31 to 7.24 (m, 2H), 7.19 (t, *J* = 7.4 Hz, 1H), 5.39 (d, *J* = 1.4 Hz, 1H), 5.25 (d, *J* = 1.7 Hz, 1H), 1.58 (s, 1H), 1.53 to 1.38 (m, 2H), 1.38 to 1.18 (m, 2H), 0.88 (t, *J* = 7.3 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 155.05, 147.70, 137.33, 133.46, 129.37, 129.33, 128.45, 128.33, 127.81, 126.94, 104.55, 63.85, 41.61, 28.96, 19.81, 13.64.

5-Benzylidene-3-butyl-4-propyl-oxazolidin-2-one (intermediate of 1i). colourless liquid; ¹H NMR (400 MHz, CDCl3) δ 7.58 (d, J = 7.5 Hz, 2H), 7.32 (t, J = 7.7 Hz, 2H), 7.20 (t, J = 7.4 Hz, 1H), 5.47 (d, J = 1.4 Hz, 1H), 4.51 (s, 1H), 3.59 (dt, J = 14.4, 8.0 Hz, 1H), 3.02 (ddd, J = 13.9, 8.3, 5.3 Hz, 1H), 1.92 – 1.78 (m, 1H), 1.74 – 1.62 (m, 1H), 1.57 (ddd, J = 21.5, 14.1, 7.9 Hz, 2H), 1.44 – 1.25 (m, 4H), 0.95 (dd, J = 7.8, 6.8 Hz, 6H). ¹³C NMR (100 MHz, CDCl3) δ 155.17, 147.04, 133.67, 128.46, 128.28, 126.72, 102.31, 58.43, 41.14, 34.41, 29.25, 19.91, 15.83, 13.90, 13.67.

5-Benzyl-3-butyl-4-phenyl-3H-oxazol-2-one (2a). colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 7.53 to 7.43 (m, 3H), 7.38 to 7.21 (m, 5H), 7.21 to 7.14 (m, 2H), 3.70 (s, 2H), 3.58 to 3.43 (m, 2H), 1.51 to 1.36 (m, 2H), 1.23 to 1.08 (m, 2H), 0.77 (t, *J* = 7.3 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 155.51, 136.93, 135.17, 129.68, 129.41, 129.04, 128.64, 128.42, 126.82, 126.79, 124.08, 42.01, 30.98, 30.67, 19.59, 13.45.

5-Benzyl-3-butyl-4-(4-methoxy-phenyl)-3H-oxazol-2-one (2b). pale yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 7.35 to 7.11 (m, 7H), 6.99 (d, *J* = 8.6 Hz, 2H), 3.86 (s, 3H), 3.67 (s, 2H), 3.47 (t, *J* = 7.4 Hz, 2H), 1.54 to 1.37 (m, 2H), 1.24 to 1.08 (m, 2H), 0.78 (t, *J* = 7.3 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 160.39, 155.50, 137.11, 134.94, 131.16, 128.62, 128.42, 126.74, 123.80, 118.77, 114.49, 55.38, 41.91, 30.97, 30.72, 19.63, 13.52.

5-Benzyl-3-butyl-4-p-tolyl-3H-oxazol-2-one (2c). colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 7.33 to 7.25 (m, 4H), 7.25 to 7.15 (m, 5H), 3.68 (s, 2H), 3.53 to 3.43 (m, 2H), 2.42 (s, 3H), 1.52 to 1.36 (m, 2H), 1.23 to 1.09 (m, 2H), 0.78 (t, *J* = 7.3 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 155.55, 139.49, 137.07, 134.99, 129.73, 129.59, 128.62, 128.43, 126.75, 124.06, 123.77, 41.97, 30.96, 30.70, 21.39, 19.62, 13.50.

5-Benzyl-3-butyl-4-(4-chloro-phenyl)-3H-oxazol-2-one (2d). pale yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 7.46 (d, J = 8.3 Hz, 2H), 7.33 to 7.19 (m, 5H), 7.16 (d, J = 7.2 Hz, 2H), 3.68 (s, 2H), 3.53 to 3.43 (m, 2H), 1.41 (dd, J = 15.0, 7.7 Hz, 2H), 1.24 to 1.08 (m, 2H), 0.79 (t, J = 7.3 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 155.34, 136.62, 135.66, 135.57, 130.94, 129.42, 128.71, 128.38, 126.91, 125.27, 122.94, 42.06, 30.99, 30.72, 19.60, 13.48.

5-Benzyl-3-butyl-4-naphthalen-1-yl-3H-oxazol-2-one (**2e**). colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 8.00 (d, J = 8.2 Hz, 1H), 7.97 to 7.90 (m, 1H), 7.74 (d, J = 7.6 Hz, 1H), 7.64 to 7.50 (m, 3H), 7.48 (d, J = 6.8 Hz, 1H), 7.25 to 7.13 (m, 3H), 7.09 (d, J = 6.8 Hz, 2H), 3.60 (q, J = 15.8 Hz, 2H), 3.47 (dt, J = 14.3, 7.3 Hz, 1H), 3.22 to 3.05 (m, 1H), 1.37 to 1.19 (m, 2H), 1.14 to 0.98 (m, 2H), 0.62 (t, J = 7.3 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 155.63, 136.61, 136.32, 133.66, 132.61, 130.54, 129.86, 128.67, 128.61, 128.51, 127.35, 126.74, 126.68, 125.28, 124.87, 123.80, 121.84, 42.31, 31.26, 30.80, 19.45, 13.33.

5-Benzyl-3-butyl-4-furan-2-yl-3H-oxazol-2-one (2f). croci oil; ¹H NMR (400 MHz, CDCl₃) δ 7.63 to 7.51 (m, 1H), 7.37 to 7.27 (m, 2H), 7.24 (dd, *J* = 8.1, 4.7 Hz, 3H), 6.50 (dt, *J* = 11.8, 2.7 Hz, 2H), 3.85 (s, 2H), 3.72 to 3.59 (m, 2H), 1.64 to 1.49 (m, 2H), 1.37 to 1.21 (m, 2H), 0.87 (t, *J* = 7.3 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 155.01, 143.75, 140.90, 137.16, 136.41, 128.73, 128.46, 126.95, 115.56, 111.31, 111.11, 42.75, 31.47, 30.83, 19.71, 13.60.

3-Butyl-5-(4-methyl-benzyl)-4-phenyl-3H-oxazol-2-one (2g). pale yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 7.57 to 7.40 (m, 3H), 7.32 (dd, *J* = 6.5, 2.9 Hz, 2H), 7.16 to 7.02 (m, 4H), 3.66 (s, 2H), 3.58 to 3.43 (m, 2H), 2.31 (s, 3H), 1.50 to 1.37 (m, 2H), 1.24 to 1.10 (m, 2H), 0.77 (t, *J* = 7.3 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 155.53, 136.38, 135.44, 133.88, 129.69, 129.36, 129.32, 129.02, 128.31, 126.89, 123.86, 41.99, 30.61, 21.03, 19.59, 13.46.

5-Benzyl-4-phenyl-3-(4-phenyl-butyl)-3H-oxazol-2-one (**2h**). pale yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 7.51 to 7.38 (m, 3H), 7.33 to 7.19 (m, 7H), 7.15 (dd, J = 12.0, 7.0 Hz, 3H), 7.03 (d, J = 7.2 Hz, 2H), 3.68 (s, 2H), 3.52 (t, J = 6.7 Hz, 2H), 2.47 (t, J = 6.8 Hz, 2H), 1.59 to 1.37 (m, 4H). ¹³C NMR (100 MHz, CDCl₃) δ 155.56, 141.77, 136.91, 135.27, 129.66, 129.45, 129.09, 128.68, 128.44, 128.35, 128.32, 126.84, 126.72, 125.82, 123.98, 42.04, 35.05, 30.97, 28.07, 27.97.

2. Theoretical Section

2.1. Figures S5-S7

Figure S5 Non-catalytic potential energy curve

 E_{a1} : the overall energy barrier (kcal/mol) of the cycloaddition process; E_{a2} : the overall energy barrier (kcal/mol) of the synthesis of 3.4.5-trisubstituted oxazolone from propargylic amines and CO₂.

Figure S6 [Bmim][OAc] promoted potential energy curve

 E_a : the overall energy barrier (kcal/mol).

Figure S7 The potential energy curve of the double-bond isomerization promoted by [OAc]⁻

 E_a : the overall energy barrier (kcal/mol)

2.2. Optimized geometries of the transition states

		TS1-2		
Ν	-0.61085976	0.79185519	0.00000000	
Н	0.62260424	1.03458119	0.34099900	
С	-0.49071176	1.09231619	1.53987500	
0	-1.39441676	1.09968519	2.32104500	
0	0.77411724	1.31974819	1.56956400	
С	-1.03764576	-0.60206781	-0.37632300	
Н	-0.90346376	-0.64409581	-1.46361500	
С	-1.36192676	1.84439219	-0.71011700	
Н	-0.92923776	2.81416019	-0.46039700	
Н	-2.41452876	1.83129119	-0.41882800	
С	-2.45253176	-0.83876581	-0.08735600	
С	-3.62383976	-1.01626581	0.14020800	C
С	-0.09839376	-1.63406481	0.24061100	
С	1.07334424	-1.97499081	-0.44137800	
С	-0.36803576	-2.22750281	1.47539500	
С	1.96786324	-2.89185181	0.10438300	1724 1 :
Н	1.28695824	-1.52446981	-1.40595000	1/24.1 l
С	0.52833324	-3.14308581	2.02264400	
Н	-1.27860276	-1.97437781	2.00505600	
С	1.69625724	-3.47704581	1.33998800	
Н	2.87192624	-3.15084181	-0.43485800	
Н	0.31188724	-3.59597281	2.98338200	
Н	2.39053224	-4.19188081	1.76691700	
С	-5.00492276	-1.20460881	0.44705900	
С	-5.83555276	-1.95807381	-0.39964800	
С	-5.55099276	-0.63063381	1.60868200	
С	-7.18009376	-2.13152281	-0.08920400	
Н	-5.41748676	-2.40277381	-1.29480300	
С	-6.89708276	-0.80797681	1.90959600	
Η	-4.91041076	-0.05060281	2.26214100	
С	-7.71503276	-1.55739281	1.06393200	
Н	-7.81191976	-2.71567381	-0.74867900	
Η	-7.30836876	-0.36078181	2.80743400	
Н	-8.76362076	-1.69402181	1.30258400	
Η	-1.28028876	1.68463819	-1.78742700	
Opti	mized geometries	s of transition st	ates TS1-2. T	he imaginary vibrational frequency (cm ⁻¹) is shown.

	TS2-3		
0.18099548	-0.04524887	0.00000000	
2.62030348	-0.61176987	-1.59879700	
0.64726748	0.76112413	-1.08638900	
0.40111348	1.95444013	-1.10805000	
1.29752648	0.03621813	-1.94817600	
0.56552848	-1.44313887	0.05473300	
0.69548948	-1.70682187	1.11843100	
-0.65694152	0.49849713	1.05386900	
-0.90791852	1.51804913	0.76734900	C. C
-0.13409452	0.52617813	2.01824700	C
1.92381048	-1.56231587	-0.48136400	
3.11276948	-1.49163787	-0.88005700	
-0.42391152	-2.44967287	-0.53823800	
-0.79588752	-3.56815587	0.20985200	
-0.96481652	-2.26176887	-1.81389600	
-1.69942652	-4.49681787	-0.30682400	
-0.38684452	-3.71467187	1.20544500	
-1.86656252	-3.18951187	-2.32742800	1354 5 <i>i</i>
-0.66942952	-1.39801387	-2.39643000	1551.57
-2.23547052	-4.30775187	-1.57779200	
-1.98707752	-5.35836587	0.28510900	
-2.28277652	-3.03940187	-3.31718900	
-2.94052052	-5.02514687	-1.98239500	
4.49792248	-1.90663987	-0.81748000	
4.90109748	-2.92999087	0.05627000	
5.45074348	-1.28215087	-1.63461300	
6.23475348	-3.31564287	0.10780500	
4.16687448	-3.41908587	0.68559200	
6.78503548	-1.67121887	-1.57407900	
5.13993448	-0.49407487	-2.31023000	
7.17944448	-2.68708287	-0.70517400	
6.53921448	-4.10720587	0.78271400	
7.51589148	-1.18171187	-2.20691700	
8.21914648	-2.99017987	-0.66102500	
-1.57856652	-0.08306787	1.16597200	
6. 7. 8. -1.	53921448 51589148 21914648 57856652	-2.03703337 53921448 -4.10720587 51589148 -1.18171187 21914648 -2.99017987 57856652 -0.08306787	17)4448 -2.03703207 -0.70317400 53921448 -4.10720587 0.78271400 51589148 -1.18171187 -2.20691700 21914648 -2.99017987 -0.66102500 57856652 -0.08306787 1.16597200

		TS3-4		
С	-0.13574661	0.38461538	0.00000000	
С	0.66511739	0.78999638	-1.07397400	
Ν	-0.62519461	1.64696138	0.51130900	
C	-0.34535661	2.65027938	-0.38403300	T U
0	-0.65228661	3.80903638	-0.36667000	
0	0.44745639	2.09180838	-1.41557500	
C	-1.44814561	1.86413438	1.69102200	
Η	-1.74490761	2.91176338	1.70589400	
Н	-0.88198061	1.63804138	2.59757100	C
С	1.68025539	-0.11617962	-1.46117000	
Н	0.93867739	-0.60615062	-0.10789000	C
Н	1.82100739	-0.28342562	-2.53146800	
С	-1.18072261	-0.71366562	-0.04249700	
C	-1.04006061	-1.89147962	0.69368800	
С	-2.34174761	-0.52037062	-0.80413200	
C	-2.03168061	-2.87188862	0.65775800	
Н	-0.14913561	-2.04125062	1.29302800	
С	-3.32794361	-1.50105362	-0.84457500	
Н	-2.46717961	0.39446338	-1.37314100	
С	-3.17516261	-2.67970662	-0.11260100	1671.9 <i>i</i>
Н	-1.90815461	-3.78269162	1.23239600	
H	-4.21369761	-1.34810262	-1.45076500	
H	-3.94524361	-3.44202562	-0.14385800	
C	2.93943239	-0.33630362	-0.69171000	
C	3.78706739	-1.39176562	-1.06691900	
C	3.34618039	0.49171738	0.36796300	
C	4.98198939	-1.62541962	-0.39393600	
Н	3.49894739	-2.03652/62	-1.890/5600	
	4.53650139	0.24631038	1.04728900	
H	2.73827839	1.34313938	0.65239400	
	5.50192459	-0.8134/062	0.07455400	
п	1 82027220	-2.44749302	1 25 22 6 5 0 0	
п	6 20226520	0.90525556	1.03000000	
п	0.29550559	-0.99427302	1.19822900	
п	-2.34007701	1.23404730	1.03071000	
Opt	imized geometries	s of transition st	ates TS3-4. T	he imaginary vibrational frequency (cm ⁻¹) is shown.

	,	ТS5-6		
0	-1.04865774	1.05704696	0.00000000	
С	-1.38382474	0.10488196	0.64304500	
0	-1.51468174	-1.07871404	0.75722400	
С	2.05151926	0.35349296	1.07693200	
Ν	2.17308826	0.81232096	-0.17692200	
С	2.04702926	-0.24464304	-1.06121100	
С	1.85590526	-1.36647104	-0.31155300	
Ν	1.86029526	-0.97188804	1.01449600	
С	2.26124926	2.22823596	-0.53890000	
С	1.65784326	-1.84115504	2.18061000	
Н	2.51910226	2.80256296	0.35102900	
Н	3.03409526	2.36048596	-1.29992200	
Н	1.34217826	-1.21086204	3.01787700	
Н	2.58637926	-2.37022804	2.41400100	C C
Н	0.86544526	-2.55407804	1.94401800	
Н	1.69510726	-2.39294804	-0.60196500	CÍC
Н	2.08085726	-0.10477804	-2.13055000	
Н	2.08811426	0.96093896	2.00584700	
Н	1.29202326	2.56469996	-0.91494300	-
Ν	-1.93066974	0.81442096	2.47246100	
С	-2.45160074	2.21519296	2.60599500	
С	-2.78633874	-0.16898504	3.15694800	84.0
С	-1.43754874	3.19749196	2.20490300	
Н	-3.76760074	-0.21526804	2.67799400	
Н	-2.31154474	-1.14730604	3.08119800	
Н	-2.91038274	0.08632996	4.21846900	
С	-0.60811274	4.05054196	1.96759900	
H	-1.00630774	0.79200596	2.94434600	
0	0.46907826	0.53053296	3.98503100	
C	1.33026826	1.40800396	4.31537900	
0	2.20533226	1.88925196	3.53694200	
Č	1.29536026	1.93638896	5.75093200	
H	0.74523126	2.88678996	5,76540300	
Н	2.30810126	2.13842896	6.11372200	
Н	0.78537526	1.23497696	6.41739600	
С	0.38314826	5.04314996	1.68392900	
С	0.07128326	6.15731196	0.87847400	
C	1.68430326	4.92004896	2.21657000	
С	1.03833126	7.12668996	0.61229800	
H	-0.93154974	6.25433896	0.47189400	
С	2.64273726	5.89719796	1.94230200	
Н	1.92920326	4.05669196	2.83239500	
С	2.32678026	7.00110096	1.14283000	
Н	0.78471126	7.98319896	-0.00764300	
Н	3.64103026	5.79613596	2.36157800	
Н	3.07749626	7.76025796	0.93719800	
С	-3.79585474	2.42450096	1.90569900	
С	-3.89191674	2.54379896	0.51162100	
С	-4.96348074	2.51559696	2.67398800	
C	-5.13431574	2.73432296	-0.09625100	
Н	-2.99157474	2.48998696	-0.09146600	
С	-6.20817574	2.70946596	2.06726900	
Н	-4.90072674	2.43921996	3.75775200	
C	-6.29645874	2.81701196	0.67787900	
Ĥ	-5.19402774	2.82369696	-1.17826600	
Н	-7.10322974	2.77926796	2.68041900	
Н	-7.26160074	2.96951496	0.20120500	
Н	-2.62888074	2.37445896	3 68300000	

Optimized geometries of transition states TS5-6. The imaginary vibrational frequency (cm⁻¹) is shown.

	,	TS7-8		
С	-3.25179500	-0.52165000	-0.42004900	
Ν	-4.26686300	-1.38920100	-0.35036400	
С	-5.42818200	-0.74748500	-0.74227200	
С	-5.08710000	0.52965100	-1.06217600	C
Ν	-3.72485700	0.64671900	-0.86014200	C N
С	-4.14737900	-2.78164200	0.10528500	
С	-2.92496600	1.86580200	-1.02312000	
Н	-4.75495200	-3.41453300	-0.54151600	
Н	-3.09844300	-3.08284300	0.03118600	
Н	-3.09450200	2.27449900	-2.01966100	
H	-1.87375900	1.61188500	-0.89393900	
H	-3.20714400	2.58493900	-0.25584000	
H	-5.68677100	1.35137800	-1.41319600	
H	-6.37975700	-1.24933000	-0.76548200	
H	-2.21379000	-0.73897600	-0.16098200	
Н	-4.49936700	-2.85907900	1.13514100	
C	0.66722200	1.03517600	-0.34716500	
C	0.85081900	-0.19018000	-0.53432500	C = C
C	-0.44849100	-1.31229000	0.09697700	
с u	1./4508800	-1.2/603000	-1.00582300	
н С	2.00293200	-0.90635400	-2.07061000	
	-0.20848/00	-2.45108900	-0.52212900	C T
N	-1.08508800	-3.38022000	-0.55045600	
N C	0.94629100	-2.48008000	-1.1/293000	
с и	2 25400000	-5.629/1400	-1.93070000	
п u	2.53490900	-4.01014000	-1.33490400	
п u	1.55152000	-4.40882700	-1.83394700	
C	-1 63824700	-3.37112800	2 73386900	C
č	-1.83501300	1.14784500	4 22622600	T
н	-2 89183300	1 39281100	4.22022000	
н	-1 45113600	0.37170800	4 71872700	
н	-1 26511400	2.11791300	4 60925700	277.0 i
0	-0.35427900	1.05555900	2,41034900	
ŏ	-2.55210800	1.13604600	1.92901200	
Ĥ	-0.21702000	0.95744800	1.42420100	
С	3.00612400	-1.44908300	-0.21853700	
С	4.21579200	-0.90556600	-0.65289800	
С	2.96696000	-2.12939900	1.00213700	
С	5.37131400	-1.03361100	0.11798300	
Н	4.25492600	-0.37287500	-1.59802300	
С	4.11941200	-2.26106300	1.77193500	
Η	2.03160400	-2.55392900	1.34887300	
С	5.32555700	-1.71310200	1.33278900	
Н	6.30408700	-0.60551600	-0.23236900	
Н	4.07719300	-2.79078300	2.71743900	
Н	6.22208300	-1.81708800	1.93384900	
C	1.13898800	2.36104500	-0.62174800	
C	0.93039500	2.96101800	-1.88416500	
C	1.78790100	3.13432000	0.36580700	
C	1.36171800	4.25806100	-2.14460100	
H	0.43501700	2.38982200	-2.66223700	
C	2.22378900	4.42571100	0.09154600	
Н	1.95048900	2.70449700	1.34731500	
C	2.01349600	5.00345700	-1.16189800	
H	1.1921/200	4.68/31100	-5.12/10500	
н u	2.73028900	4.9896/200	0.80822800	
н	2.35023400	0.01294800	-1.30/68000	

	1	S9-10		ų,			
С	-0.84470988	0.20477815	0.00000000	HL.			
С	-2.17459688	-0.01148885	-0.24382600				
0	-2.97510388	1.12958815	-0.13986200				
С	-3.02710488	-1.14450285	-0.55096700				
Н	-3.11434988	-1.94555785	0.84651800	C			
С	-4.29013688	0.81841215	-0.42489200				
0	-4.90658988	-3.63814385	1.33491000				
0	-5.17518888	1.65435815	-0.38722400				
С	-4.03625688	-3.27082585	2.11373300				
С	-3.94234488	-3.81851285	3.53027000				
Н	-4.03614888	-2.99886285	4.24729200	с нс п п			
Н	-4.72731188	-4.55447085	3.70165000	H			
Н	-2.96087988	-4.27368485	3.68505400				
0	-3.09896988	-2.39202485	1.85730500				
Ν	-4.34724888	-0.49823085	-0.69957500	H			
С	-5.60713588	-1.17477685	-0.93308100				
Н	-5.74468088	-1.98579685	-0.21432300				
H	-6.40031488	-0.43546685	-0.81954200	H C C			
H	-5.64874388	-1.58809285	-1.94588000				
Н	-0.59951988	1.25135115	0.15259900				
C	0.26114712	-0.71429685	0.14785600				
C	1.56/59912	-0.1/859885	0.27/14000	•			
C	0.15183812	-2.12309/85	0.216/0900	367.6 i			
	2.68285612	-0.98625885	0.45263100	507.01			
H	1.090/9/12	0.899991/15	0.23860300				
U U	0.82026188	-2.92/38/83	0.39723300				
П	-0.82020188	-2.36914063	0.14941800				
u U	2.54544512	-2.37033183	0.51215000				
и И	1 1/178512	-4.00441185	0.34434300				
и	3 /1812612	-3.01221585	0.44903000				
C	-2 66914988	-2 10945485	-1 63825300				
C	-3 34827188	-3 33877085	-1 74582900				
C	-1 65174588	-1 84908185	-2 57209600				
Č	-3 04439788	-4 24481985	-2.75870600				
Ĥ	-4.10102288	-3.59184885	-1.00795900				
C	-1.33777088	-2.76303785	-3.57584000				
Ĥ	-1.09980288	-0.91912985	-2.50163700				
С	-2.03663788	-3.96440985	-3.68309800				
H	-3.58668788	-5.18391485	-2.81411000				
Н	-0.54231188	-2.53231085	-4.27803700				
Н	-1.79153788	-4.67672585	-4.46437600				
Optin Charg	Optimized geometries of transition states TS9-10. The imaginary vibrational frequency (cm^{-1}) is shown. Charge = -1 Multiplicity = 1						

C C C C C O	0.38395903 -0.68446697	0.97269623		H C
C O C C O	-0.68446697		0.00000000	
0 C C 0		0.02210523	0.21703900	
C C O	-0.25832097	-1.31435677	0.10027300	
C O	-2.00124797	-0.00212477	0.59465300	
0	-1.27921997	-2.16060177	0.40988200	
	-1.21452797	-3.37239877	0.32674200	
Ν	-2.34133797	-1.38401577	0.78552400	
С	-3.67010797	-1.95396177	0.87944400	н
Н	-4.35266797	-1.45990377	0.18209500	
Н	-3.58481997	-3.01020477	0.62358400	
Н	-4.08460697	-1.87036077	1.88807500	
Н	0.93149303	0.73044623	-0.91347300	
С	0.25648103	2.41946323	0.22818000	
С	-0.33259897	2.97042623	1.38602800	
С	0.85837503	3.32947323	-0.66693800	На на
С	-0.33374797	4.34079223	1.62171200	
Н	-0.77697397	2.30715923	2.11877900	(c) T
С	0.86100003	4.70057723	-0.42892200	Н
Н	1.34584503	2.93909023	-1.55455000	
С	0.25818503	5.22386723	0.71619900	LH
Н	-0.79781897	4.72329923	2.52600400	
Н	1.33929303	5.36502423	-1.14287400	C
Н	0.25641103	6.29270723	0.90298300	HU IN
С	-2.97883197	1.06430923	0.78118800	
С	-3.88785197	1.05678423	1.85882900	1135 0 <i>i</i>
С	-3.05119297	2.14384023	-0.12032600	1155.97
С	-4.83374697	2.06555223	2.01358800	
Н	-3.83297497	0.26557923	2.59699900	
С	-3.98947097	3.15657623	0.04385500	
Н	-2.36190297	2.17725223	-0.95425100	
С	-4.89462597	3.12295623	1.10531600	
Н	-5.51554097	2.03381023	2.85774700	
Н	-4.01352697	3.97781623	-0.66467900	
Н	-5.62740697	3.91310223	1.22899700	
C	3.46197803	0.18928723	1.24271900	
0	2.25754703	0.27368923	1.72547900	
0	3.80573203	0.45143823	0.09313100	
C	4.48203603	-0.29790877	2.27437600	
H	4.2288/103	-1.31693177	2.58096200	
H	5.48/2/803	-0.28150477	1.8517/900	
H	4.44022503	0.55136423	5.16/42200	
Н	1.41055103	0.59020123	0.90979000	
Optimize Charge =	ed geometries = -1 Multiplici	of transition st ty = 1	ates TS9-10. '	The imaginary vibrational frequency (cm ⁻¹) is shown.

3. References

S1. Gaussian 09, Revision A.01, Frisch,M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, Jr.,J. A.; Peralta,J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev,O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian, Inc., Wallingford CT, **2009**.

S2. Y. Sugawara, W. Yamada, S.Yoshida, T. Ikeno, T. Yamada, J. Am. Chem. Soc. 2007, 129, 12902.

S3. W. J. Yoo and C. J. Li, Adv. Synth. Catal. 2008, **350**, 1503.

160 155 150 145 140 135 130 125 120 115 110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 fl (ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

