Supplementary Information for

New porous Zr-containing catalyst with phenate group: efficient catalyst for catalytic transfer hydrogenation of ethyl levulinate to γ-valerolactone

Jinliang Song*, Lingqiao Wu, Baowen Zhou, Huacong Zhou, Honglei Fan, Yingying Yang, Qinglei Meng and Buxing Han*

Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. Tel/fax: 86-10-62562821. E-mail: songjl@iccas.ac.cn, hanbx@iccas.ac.cn.

Table of Contents

1.	Table S1. Physical properties of Zr-BDC and Zr-HBAS	2
2.	Fig. S1. N ₂ adsorption-desorption isotherm for Zr-BDCS	52
3.	Fig. S2. NH ₃ -TPD spectra of Zr-HBAS	33
4.	Fig. S3. CO ₂ -TPD spectra of Zr-HBAS	54
5.	Fig. S4. TEM image of the as-prepared Zr-HBAS	35

Sample ^a	BET surface area (m ² g ⁻¹) ^b	Pore volume	Pore diameter			
		$(cm^3g^{-1})^c$	(nm) ^d			
Zr-BDC	257.9	0.20	4.5			
Zr-	87.3	0.21	8.0			
HBA						
^a The sample was degassed at 100 °C for 24 h. ^b Surface Area based on multipoint						
BET method. ^c Pore volume and pore diameter based on BJH method.						

1. Table S1. Physical properties of Zr-BDC and Zr-HBA.

Fig. S1. N_2 adsorption-desorption isotherm for Zr-BDC.

Fig. **S2**. NH₃-TPD spectra of Zr-HBA. Temperature-programmed desorption of ammonia (NH₃-TPD) was performed on Micromeritics' AutoChem 2950 HP Chemisorption Analyzer. The catalysts were charged into the quartz reactor, and the temperature was increased from room temperature to 150 °C over 1 h at a rate of 10 °C min⁻¹ under a flow of He (50 cm³min⁻¹), and then the temperature was decreased to 50 °C. NH₃/He (10/90, 50 cm³min⁻¹) was pulsed into the reactor at 50 °C under a flow of He (10 cm³min⁻¹) until the acid sites were saturated with NH₃. The adsorbed NH₃ was removed by a flow of He (50 cm³min⁻¹). When the baseline was stable, the temperature was increased from 50 °C to 350 °C at a rate of 10 °C min⁻¹. The NH₃-TPD curve of the Zr-HBA was shown in Fig. S2. Due to the decomposition temperature of the as-prepared catalyst was about 350 °C, the test could conduct under the temperature lower than 350 °C. It could be found that there existed large amounts of acid sites, which were mainly resulted from Zr⁴⁺ (*RSC Adv., 2013, 3, 10277*).

S3. CO₂-TPD spectra of Zr-HBA. Temperature-programmed Fig. desorption of carbon dioxide (CO₂-TPD) was performed on Micromeritics' AutoChem 2950 HP Chemisorption Analyzer. The catalysts were charged into the quartz reactor, and the temperature was increased from room temperature to 150 °C over 1 h at a rate of 10 °C min⁻¹ under a flow of He (50 cm³min⁻¹), and then the temperature was decreased to 50 °C. CO_2 (50 cm³min⁻¹) was pulsed into the reactor at 50 °C under a flow of He (10 cm^3min^{-1}) until the acid sites were saturated with CO₂. The adsorbed CO₂ was removed by a flow of He (50 cm³min⁻¹). When the baseline was stable, the temperature was increased from 50 °C to 350 °C at a rate of 10 °C min⁻¹. The CO₂-TPD curve of the Zr-HBA was shown in Fig. S3. Due to the decomposition temperature of the as-prepared catalyst was about 350 °C, the test could conduct under the temperature lower than 350 °C. It could be found that there existed large amounts of basic sites, which were mainly resulted from O²⁻ in the carboxylate and phenate groups (RSC Adv., 2013, 3, 10277).

Fig. S4. TEM image of the as-prepared Zr-HBA.