Mesoporous Zr-Beta zeolite prepared by post-synthetic strategy as a robust Lewis acid catalyst for the ring-opening aminolysis of epoxides

Bo Tang¹, Weili Dai¹, Xiaoming Sun^{1,2}, Guangjun Wu¹, Naijia Guan¹, Michael

Hunger², Landong Li^{1,*}

¹ Key Laboratory of Advanced Energy Materials Chemistry of Ministry of Education,

Collaborative Innovation Center of Chemical Science and Engineering (Tianjin),

College of Chemistry, Nankai University, Tianjin 300071, China

² Institute of Chemical Technology, University of Stuttgart, 70550 Stuttgart, Germany

*Corresponding author

Tel./Fax: + 86-22-23500341

E-mail address: <u>lild@nankai.edu.cn</u> (L. Li)

Figure S1 UV-vis spectra of Zr-Beta and Meso-Zr-Beta samples.

Figure S2 XRD patterns of Meso-Ti-Beta and Meso-Sn-Beta samples.

Figure S3 UV-vis spectra of Meso-Ti-Beta and Meso-Sn-Beta samples. UV-vis spectra of corresponding bulk metal oxides SnO_2 and anatase TiO_2 are shown in dashed lines for reference

Figure S4 N_2 adsorption/desorption isotherms and pore diameter distribution of

Meso-Sn-Beta and Meso-Ti-Beta

Figure S5 XRD patterns of fresh and reused Zr-containing silicates samples.

over various catalysts ^a							
Catalyst ^b	Temperature	Styrene oxide	Product	TON	Average	Ref.	
	/ Time	Conv. (%)	select. (%)	$(mol_{Epo}mol_{M}^{-1})$	TOF (h ⁻¹)		
TS-1 (30)	308K / 6h	39.1	88.1	312	52	[39]	
Ti-MCM-41 (30)	308K / 6h	92	95.8	726	121	[39]	
Ti-SBA-15 (30)	308K / 6h	90.2	92.1	654	109	[39]	
Ti-SBA-12 (30)	308K / 6h	93.7	92.9	882	147	[39]	
Ti-SBA-16 (30)	308K / 6h	86.9	93.5	936	156	[39]	
Zr-ZSM-5 (50)	318K / 5min	26	96	195	2340	[40]	
Ti-Nano(PrTES)-ZSM-5 (50)	318K / 5min	8	92	58	695	[40]	
Ti-Nano(TPHAC)-ZSM-5 (50)	318K / 5min	8	91	56	677	[40]	
Zr-Nano(PrTES)-ZSM-5 (50)	318 K / 5 min	83	96	587	7040	[40]	
Zr-Nano(TPHAC)-ZSM-5 (50)	318K / 5min	79	94	566	6790	[40]	
Zr-Beta (100)	308K / 0.5h	40.5	94.4	486	972	this study	
Meso-Sn-Beta (100)	308K / 0.5h	41.0	91.1	492	984	this study	
Meso-Ti-Beta (100)	308K / 0.5h	56.6	92.4	679	1358	this study	
Meso-Zr-Beta (100)	308 K / 0.5 h	80.7	94.7	968	1936	this study	
Meso-Zr-Beta (100)	318K / 5min	67.5	95.8	810	9720	this study	

Table S1 Comparison between the catalytic activity of the ring-opening aminolysis of styrene oxide with aniline

^{*a*} Reaction conditions: n(epoxide) / n(amine) = 1:1; ^{*b*} Values in parentheses indicate the Si/Al molar ratio of

catalysts.

Sample	$n_{\rm Si}/n_{\rm Zr}$ ^b	Surface area (m ² g ⁻¹) ^c		
Zr-Beta	97.3	600		
Meso-Zr-Beta	97.0	720		
Zr-Beta ^a	96.9	437		
Meso-Zr-Beta ^a	97.1	715		

Table S2 Physicochemical properties of Zr-silicate zeolites.

^{*a*} After five cycles; ^{*b*} Determined by ICP;

^c Determined by nitrogen adsorption