Electronic Supplementary Information

Room Temperature Selective Oxidation of Aniline to Azoxybenzene over

Silver supported Tungsten Oxide Nanostructured Catalyst †

Shilpi Ghosh, ^a Shankha Shubhra Acharyya,^a Takehiko Sasaki ^band Rajaram Bal^a *

^aCatalytic Conversion & Processes Division, CSIR-Indian Institute of Petroleum, Dehradun 248005, India

^bDepartment of Complexity Science and Engineering, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwanoha, Kashiwa-shi, Chiba 277-8561, Japan

[*]Ms. Shilpi Ghosh, Mr. Shankha Shubhra Acharyya, Prof. Dr. Takehiko Sasaki, Dr. Rajaram Bal

Corresponding author. Tel.: +91 135 2525917; Fax: +91 135 2660202

E-mail addresses: raja@iip.res.in

Experimental:

Azoxybenzene : ¹H-NMR (500 MHz, CDCl₃): δ 7.40–7.56 (6H, m), 8.16–8.32 (4H, m); IR, υ (KBr disc): 1473, 1435, 1327, 763, 684 cm⁻¹.

4, 4'-Dichloroazoxybenzene: ¹H-NMR (500 MHz, CDCl₃): δ 7.5 (4H, dd, J=6 and 3 Hz), 8.20 (2H, d J=3 Hz), 8.26 (2H, d, J=7 Hz); IR, υ (KBr disc): 1573, 1480, 1399, 1310, 821 cm⁻¹.

3, 3'-Dichloroazoxybenzene: ¹H-NMR (500 MHz, CDCl₃): δ 7.3-7.6 (4H, m), 7.90-8.43 (4H, m); IR, υ (KBr disc): 1571, 1471, 1190, 1010, 780, 675 cm⁻¹.

4, 4'-Dimethoxyazoxybenzene: ¹H-NMR (500 MHz, CDCl₃): δ 3.85 (6H, s, OMe), 6.9 (4 H, dd, J=9.5 and 3 Hz), 8.2 (4H, dd, J= 9 and 9 Hz); IR, υ (KBr disc): 1594, 1492, 1300, 1020, 837 cm⁻¹.

4, 4'-Dinitroazoxybenzene: ¹H-NMR (500 MHz, CDCl₃): δ 8.4(4 H, dd, J= 5 and 2 Hz), 8.6 (4H, dd, J= 5 and 3 Hz); IR, υ (KBr disc): 1514, 1472, 1365, 1078, 847, 719 cm⁻¹.

2, 2'-Diethylazoxybenzene: ¹H-NMR (500 MHz, CDCl₃): δ 2.5 (4H, m), 1.5 (6 H), 7.4-7.6 (6H, m), 7.9 (1H, d, J= 3 Hz), 8.3 (1H, d, J = 2.5 Hz) ; IR, v (KBr disc): 1597, 1491, 1335, 1120, 827 cm⁻¹.

3, 3'-Dimethylazoxybenzene: ¹HNMR (500 MHz, CDCl₃): δ 2.34 (6H,s), 7.3–7.5 (4H, m), 7.95–8.2 (4H, m); IR, υ (KBr disc): 1597, 1496, 1448, 1336, 780 cm⁻¹.

Figure S1. Elemental mapping of Ag/WO₃ catalyst a), b) SEM image, c) position of silver, d) position of oxygen and e) position of tungsten.

Figure S2. TEM-EDX of Ag/WO₃ catalyst.

a) Fresh catalyst

b)Spent catalyst

Fig. S3 EXAFS spectra of Ag/ WO₃ catalyst a) fresh catalyst and b) spent catalyst.

Dissociation of H₂O₂

$$H_{2}O \longrightarrow H^{+} + OH^{-}$$

$$H_{2}O_{2} + OH^{-} \longrightarrow HO_{2}^{-} + H_{2}O$$

$$OH^{-} + HO_{2}^{-} \longrightarrow O_{2}^{2^{-}} + H_{2}O$$

$$O_{2}^{2^{-}} + H_{2}O_{2} \longrightarrow O_{2}^{\bullet^{-}} + OH^{-} + \bullet OH$$

$$OH + H_{2}O_{2} \longrightarrow H_{2}O + OH^{-}$$

$$OH^{-} + H_{2}O \longrightarrow HO_{2}^{\bullet} + OH^{-}$$

$$HO_{2} + H_{2}O \longrightarrow HO_{2}^{\bullet} + OH^{-}$$

$$HO_{2} + OH^{-} \longrightarrow HO_{2}^{\bullet} + OH^{-}$$

$$HO_{2} - H_{2}O_{2} + O_{2} \longrightarrow H_{2}O_{2} + O_{2}$$

Scheme S1. Mechanism of oxidative coupling of aniline to azoxybenzene

$$Ag^{0} + 2H_{2}O_{2} \longrightarrow Ag^{+} + O_{2}^{-} + 2H_{2}O \qquad (i)$$

$$O_{2}^{-} + H_{2}O \longrightarrow HO_{2}^{-} + OH \qquad (ii)$$

Fig. S4 Recyclability test of Ag/WO₃ nanostructure catalyst for the oxidation of aniline to azoxybenzene.

Reaction Condition: solvent= acetonitrile; aniline =1g; weight of catalyst = 0.10 g; aniline: H₂O₂ mole ratio =1:3; temperature = Room Temperature, time= 24 h.