Electrocatalytic Recovery of Elements from Complex Mixtures using Deep Eutectic Solvents

Andrew P. Abbott^{*a}, Robert C. Harris^a, Fay Holyoak^a, Gero Frisch^b, Jennifer Hartley^b and Gawen R. T. Jenkin^c

^aDepartment of Chemistry, University of Leicester, Leicester LE1 7RH, UK

^bInstitut für Anorganische Chemie, TU Bergakademie Freiberg, Leipziger Str. 29, 09599

Freiberg, Germany

^c Department of Geology, University of Leicester, Leicester LE1 7RH, UK

*Corresponding author: Fax: (+) 44 116 252 3789 E-mail: apa1@le.ac.uk

Supplementary Information: SEM and EDX results of the Deposits

SEM and EDX result for Arsenic Deposit on Copper

Figure S1: Scanning electron micrograph (left) and EDX spectrum (right) of arsenic electrowon at 2.30 V from the GaAs wafer digested in 0.1 mol dm^3 iodine in Ethaline.

Element	keV	Wt%	At%
0	0.523	6.01	21.96
Cu	8.046	33.40	30.74
As	10.542	60.59	47.29
Total		100.00	100.00

Table S1: Elemental composition of arsenic deposit shown in Figure S1

SEM and EDX result for Gallium Deposit on Copper

*Figure S2: Scanning electron micrograph (left) and EDX spectrum (right)of gallium electrowon at 2.60 V from the GaAs wafer digested in 0.1 mol dm*³ *iodine in Ethaline.*

Element	keV	Wt%	At%
0	0.523	14.31	39.88
Al	1.487	0.38	0.63
Cu	8.046	79.24	55.60
Ga	9.251	6.07	3.88
Total		100.00	100.00

Table S2: Elemental composition of gallium deposit shown in Figure S2

SEM and EDX result for Gold/ Silver Deposits on Nickel

Figure S3: Scanning electron micrograph (left) and EDX spectrum (right)of gold and silver electrowon at a current density of 4 mA cm⁻² *following digestion of* **Crom Allt top** *sample in 0.1 mol dm*⁻³ I_2 *in Ethaline.*

Element	Weight%	Atomic%
Ni K	27.16	27.27
Ag L	17.51	9.57
Au M	41.56	12.44
0	13.76	50.72
Totals	100.00	

Table S3: Elemental composition of gold/silver deposit shown in Figure S3

Figure S4: Scanning electron micrograph (left) and EDX spectrum (right) of gold and silver electrowon at a current density of 4 mA cm⁻² following digestion of **Crom Allt mid reach** sample in 0.1 mol dm⁻³ I_2 in Ethaline.

Element	Weight%	Atomic%
Ni K	16.68	19.16
Ag L	13.36	8.35
Au M	57.42	19.66
0	12.53	52.83
Totals	100.00	

Table S4: Elemental composition of gold/silver deposit shown in Figure S4

Figure S5: Scanning electron micrograph (left) and EDX spectrum (right) of gold and silver electrowon at a current density of 4 mA cm⁻² following digestion of **Coire Ghamnain** sample in 0.1 mol dm⁻³ I_2 in Ethaline.

Element	Weight%	Atomic%
Ni K	16.63	19.19
Ag L	10.23	6.42
Au M	60.49	20.80
0	12.66	53.59
Totals	100.00	

Table S5: Elemental composition of gold/silver deposit shown in Figure S5