Supporting Information

Aluminum Porphyrin Complex with High Activity and Selectivity for Cyclic Carbonate Synthesis

Yusheng Qin, *^a Hongchen Guo,^a Xingfeng Sheng,^{a,b} Xianhong Wang, *^a Fosong Wang^a

^a Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People's Republic of China.

^b University of Chinese Academy of Sciences, Beijing 100039, People's Republic of China

Contents

1. General Remarks	S2
2. ¹ H NMR data for Epoxides and cyclic carbonate products	S3
3. Additional Information for Coupling Reaction of CO ₂ with Epoxide	S6
4. ¹ H and ¹³ C NMR Spectra	S8

1. General Remarks

All reactions of air- and/or moisture-sensitive complexes and product manipulations were performed under inert atmosphere using standard Schlenk technique or in a glove box. Dichloromethane (CH₂Cl₂), chloroform (CHCl₃), acetonitrile (CH₃CN), pyrrole, propylene oxide (PO) were distilled over CaH₂ under inert atmosphere. The CO₂ gas (99.999%) was purchased and used without further purification. Bis(triphenylphosphoranylidene)ammonium bromide (PPNBr) and bis(triphenylphosphoranylidene)ammonium iodide (PPNI) were synthesized as previously reported.[1] Other chemicals were obtained from Aldrich and Acros, and used as received without further purification unless otherwise stated.

NMR Experiments Solution NMR spectra were collected at ambient temperatures using Bruker ARX-300 or Bruker AV-400 spectrometer at room temperature in deuterated chloroform (CDCl₃) or dimethyl sulfoxide (DMSO) with tetramethylsilane (TMS) as internal reference. Solvent proton shifts (ppm): CDCl₃, 7.26 (s); DMSO-d₆, 2.50 (s). Solvent carbon shifts (ppm): CDCl₃, 77.16 (t); DMSO-d₆, 39.52 (m).

Mass Spectrometry Matrix-assisted laser desorption/ionization time-of-flight mass spectroscopy (MALDI-TOF/MS) was performed on a Bruker atuoflex III mass spectrometer.

2. ¹HNMR data for Epoxides and cyclic carbonate products

Propylene oxide

¹H-NMR (CDCl₃, TMS, 300 MHz): δ (ppm) = 2.72 (m, 1H), 2.46 (m, 1H), 2.14 (m, 1H), 1.06 (m, 3H).

4-methyl-1,3-dioxolan-2-one

¹H-NMR (CDCl₃, TMS, 300 MHz): δ (ppm) = 4.64 (m, 1H), 4.34 (m, 1H), 3.77 (m, 1H), 1.24 (m, 3H).

1,2-epoxy-3-chloropropane

¹H-NMR (CDCl₃, TMS, 300 MHz): δ (ppm) = 3.55 (m, 2H), 3.22 (m, 1H), 2.88 (m, 1H), 2.67 (m, 1H).

4-(chloromethyl)-1,3-dioxolan-2-one

¹H-NMR (CDCl₃, TMS, 300 MHz): δ (ppm) = 4.97 (m, 1H), 4.57 (m, 1H), 4.38 (m, 1H), 3.74 (m, 2H).

oxiran-2-ylmethanol

¹H-NMR (CDCl₃, TMS, 300 MHz): δ (ppm) = 3.75 (m, 1H), 3.43 (m, 2H), 3.08 (m, 1H), 2.68 (m, 2H).

4-(hydroxymethyl)-1,3-dioxolan-2-one

¹H-NMR (CDCl₃, TMS, 300 MHz): δ (ppm) = 4.81 (m, 1H), 4.48 (m, 2H), 4.00 (m, 1H), 3.72 (m, 1H), 2.79 (m, 1H).

2-phenyloxirane

¹H-NMR (CDCl₃, TMS, 300 MHz): δ (ppm) = 7.36 (m, 5H), 3.83 (m, 1H), 3.14 (m, 1H), 2.80 (m, 1H).

4-phenyl-1,3-dioxolan-2-one

¹H-NMR (CDCl₃, TMS, 300 MHz): δ (ppm) = 7.45 (m, 5H), 5.70 (m, 1H), 4.79 (m, 1H), 4.34 (m, 1H).

2-(allyloxymethyl)oxirane

¹H-NMR (CDCl₃, TMS, 300 MHz): δ (ppm) = 5.91 (m, 1H), 5.25 (m, 2H), 4.04 (m, 2H), 3.72 (m, 1H), 3.40 (m, 1H), 3.16 (m, 1H), 2.80 (m, 1H), 2.61 (m, 1H).

4-(allyloxymethyl)-1,3-dioxolan-2-one

¹H-NMR (CDCl₃, TMS, 300 MHz): δ (ppm) = 5.73 (m, 1H), 5.17 (m, 2H), 4.71(m, 1H), 4.40 (m, 1H), 4.25 (m, 1H), 3.90(m, 2H), 3.58 (m, 2H).

1,2-bis(oxiran-2-ylmethoxy)ethane

¹H-NMR (CDCl₃, TMS, 300 MHz): δ (ppm) = 3.72(m, 2H), 3.62 (m, 4H), 3.36 (m, 2H), 3.10 (m, 2H), 2.72 (m, 2H),2.54 (m, 2H).

4-((2-((2-oxo-1,3-dioxolan-4-yl)methoxy)ethoxy)methyl)-1,3-dioxolan-2-one

¹H-NMR (CDCl₃, TMS, 300 MHz): δ (ppm) = 4.80(m, 2H), 4.49 (m, 2H), 4.40 (m, 2H), 3.62–3.79 (m, 8H).

2-((4-(oxiran-2-ylmethoxy)butoxy)methyl)oxirane

¹H-NMR (CDCl₃, TMS, 300 MHz): δ (ppm) = 3.60(m, 2H), 3.40 (m, 4H), 3.26 (m, 2H), 3.03 (m, 2H), 2.68 (m, 2H), 2.50 (m, 2H), 1.55 (m, 4H).

$\label{eq:constraint} 4-((4-((2-oxo-1,3-dioxolan-4-yl)methoxy)butoxy)methyl)-1,3-dioxolan-2-one$

¹H-NMR (CDCl₃, TMS, 300 MHz): δ (ppm) = 4.76(m, 2H), 4.43 (m, 2H), 4.30 (m, 2H), 3.44–3.63 (m, 8H), 1.55(m, 4H).

1,3-bis(2,3-epoxypropoxy)-2,2-dimethylpropane

¹H-NMR (CDCl₃, TMS, 300 MHz): δ (ppm) = 3.66(m, 2H), 3.35 (m, 2H), 3.21 (m, 4H), 3.09 (m, 2H), 2.73 (m, 2H), 2.56 (m, 2H), 0.86 (m, 6H).

4,4'-(((2,2-dimethyl propane-1,3-diyl)bis(oxy))bis(methylene))bis(1,3-dioxolan-2-oxis)(1,3-

ne) [8]

¹H-NMR (CDCl₃, TMS, 300 MHz): δ (ppm) = 4.78(m, 2H), 4.42 (m, 4H), 3.62 (m, 2H), 3.52 (m, 2H), 3.18 (m, 4H),0.86 (m, 6H).

3. Additional Information for Coupling Reaction of CO₂ with Epoxide

Entry	Catalyst	Cocatalyst	Catalyst/Cocatalyst/PO	Conversion ^b %	TOF ^c (h ⁻¹)
1	4	PPNCl	1:5:50000	34.2	34200
2	4	PPNC1	1:20:50000	69.4	69400
3	4	PPNCl	1:50:50000	88.2	88200
4	4	PPNCl	1:100:50000	91.7	91700
5	4	PPNCl	1:120:50000	96.4	96400
6	4	PPNCl	1:150:50000	88.6	88600

Table S1 Effect of the Cocatalyst Concentration^a

^a Reaction Conditions: PO (20 mL, 16.6 g, 28.6×10^{-2} mol), Complex **4** (5.72 × 10^{-6} mol, 0.002 mol%), CO₂ (3.0 MPa), 120 °C, 0.5 h, in a 50 mL autoclave.

^b Determined by ¹H NMR

^c Moles of propylene carbonate produced per mole of catalyst per hour.

Entry	T (℃)	P (MPa)	Time (h)	Cocatalyst	Catalyst/Cocatalyst/PO	Conversion ^b %	TOF ^c (h ⁻¹)
1	90	3	0.5	PPNC1	1:120:50000	73.5	73500
2	120	3	0.5	PPNC1	1:120:50000	96.4	96400
3	150	3	0.5	PPNC1	1:120:50000	100.0	100000
4	30	0.1	5	PPNCl	1:120:100000	18.3	3660
5	120	1	0.5	PPNC1	1:120:50000	81.9	81900
6	120	5	0.5	PPNC1	1:120:50000	90.6	90600

Table S2 Effects of Reaction Pressure and Temperature^a

^a Reaction Conditions: PO (20 mL, 16.6 g, 28.6 $\times 10^{-2}$ mol), Complex 4 (5.72 $\times 10^{-6}$

mol, 0.002 mol%), in a 50 mL autoclave.

^b Determined by ¹H NMR.

^c Moles of propylene carbonate produced per mole of catalyst per hour.

Entry	Catalyst	Cocatalyst	Conversion ^b (%)	$\mathrm{TOF}^{\mathrm{c}}\left(\mathrm{h}^{\mathrm{-1}}\right)$
1	Fresh	PPNC1	74.5	149000
2	Resuse 1	PPNC1	65.5	131000
3	Resuse 2	PPNC1	58.8	117600
4	Resuse 3	PPNCl	60.0	120000
5	Resuse 4	PPNCl	61.3	122600
6 ^d	Re-added PPNCl	PPNCl	71.6	143000

Table S3. Reusability of 4/PPNCl system^a

^a Reaction Conditions: PO (20 mL, 16.6 g, 28.6×10^{-2} mol), Complex 4 (5.72×10^{-6} mol, 0.002 mol%), Catalyst 4/Cocatalyst/PO = 1:120:100000, CO₂ (3.0 MPa), 120 °C, 0.5 h, in a 50 mL autoclave.

^b Determined by ¹H NMR.

^c Moles of propylene carbonate produced per mole of catalyst per hour.

^d The amount of the PPNCl added is the loss weight of the catalyst system.

4. ¹H and ¹³C NMR Spectra 4.1 ¹H and ¹³C NMR Spectra of ligand I

300 MHz $^1\!H$ NMR spectrum of \bm{I} in CDCl_3

100 MHz ¹³C NMR spectrum of **I** in CDCl₃.

4.2¹H and ¹³C NMR Spectra of ligand II

100 MHz 13 C NMR spectrum of **II** in TFA-D

4.3 ¹H and ¹³C NMR Spectra of ligand III

300 MHz 1 H NMR spectrum of III in CDCl₃

100 MHz ¹³C NMR spectrum of **III** in CDCl₃.

4.4 ¹H and ¹³C NMR Spectra of ligand IV

300 MHz ¹H NMR spectrum of IV in CDCl₃

100 MHz 13 C NMR spectrum of **IV** in CDCl₃.

4.5 ¹H and ¹³C NMR Spectra of ligand V

300 MHz ^1H NMR spectrum of \bm{V} in CDCl_3

100 MHz ¹³C NMR spectrum of V in CDCl₃.

300 MHz ¹H NMR spectrum of **complex 1** in DMSO- d_6

100 MHz 13 C NMR spectrum of **complex 1** in DMSO-d₆

300 MHz ¹H NMR spectrum of **complex 2** in DMSO-d₆

100 MHz 13 C NMR spectrum of **complex 2** in DMSO-d₆

300 MHz ¹H NMR spectrum of **complex 3** in DMSO-d₆

100 MHz ¹³C NMR spectrum of **complex 3** in DMSO-d₆

4.9¹H and ¹³C NMR Spectra of complex 4

300 MHz ¹H NMR spectrum of **complex 4** in DMSO-d₆

100 MHz 13 C NMR spectrum of **complex 4** in DMSO-d₆

300 MHz ¹H NMR spectrum of **complex 5** in DMSO-d₆

100 MHz 13 C NMR spectrum of **complex 5** in DMSO-d₆

300 MHz ¹H NMR spectrum of **complex 6** in DMSO-d₆

100 MHz ¹³C NMR spectrum of **complex 6** in DMSO-d₆

4.12¹H, ¹³C and ¹⁹F NMR Spectra of complex 7

300 MHz ¹H NMR spectrum of **complex 7** in DMSO- d_6

376 MHz 19 F NMR spectrum of **complex 7** in DMSO-d₆