Electronic Supplementary Material (ESI) for Green Chemistry. This journal is © The Royal Society of Chemistry 2014

Supporting Information

High-Grade Diesel Production from Hydrodeoxygenation of Palm Oil over Hierarchically Structured Ni/HBEA Catalyst

Bing Ma, Chen Zhao*

Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, East China Normal University, Shanghai 200062, China

Email: czhao@chem.ecnu.edu.cn

Table S1. Physicochemical properties of the used HBEA.

Zeolite	S _{BET} [n	n ² g ⁻¹] ^a	V _{pore} [c	m^3g^{-1}] a	Si/Al ₂		
20000	Micro	Meso	Micro	Meso	[molmol ⁻¹] ^b		
HBeta	445	200	0.18	0.58	22		

 $^{^{}a}$ The specific surface areas and pore volumes are determined by N_{2} sorption at 77 K.

Table S2. The properties and activities of diverse Ni/HBeta for catalyzing stearic acid HDO.

C . 1	Rate	Iso _{HC} /		
Catalyst	$[\text{mmol}\cdot\text{g}^{-1}\cdot\text{h}^{-1}]$	$[g\cdot g^{\scriptscriptstyle -1}\cdot h^{\scriptscriptstyle -1}]$	$Total_{HC}[\%]$	
Ni/HBeta (untreated)	45	13	14	
Ni/HBeta (with TPAOH/NaOH)	67	19	15	
Ni/HBeta (with Na ₂ CO ₃)	58	17	14	
Ni/HBeta (with steaming)	9	3	0	
Ni/HBeta (with steaming-TPAOH/NaOH)	42	12	8	
Ni/HBeta (with CTAB/NaOH)	31	9	9	
Ni/HBeta (DP) ^a	18	5	2	

 $[\]overline{\ }^a$ Conditions: 1.0 g stearic acid, 0.2 g catalyst ,100 mL dodecane, 260 °C, 40 bar H₂, 2 h, stirring at 700 rpm, please see ref. [1]

Table S3. Fatty acid composition of the used palm oil.

C _{13:0} ^a	C _{14:0}	C _{15:0}	C _{16:1}	C _{16:0}	C _{17:1}	C _{17:0}	C _{18:1}	C _{18:2}	C _{18:0}	C _{20:1}	C _{20:0}	C _{22:0}	C _{24:0}
0.17	0.88	0.03	0.21	35.96	0.02	0.06	28.76	21.14	12.23	0.14	0.29	0.04	0.05

^a The nomenclature shows the number of carbon atoms and the number of C=C double bonds: for example the alkyl chain of the present fatty acid contains 14 C atoms and no double bonds

b. The Si and Al contents are determined by ICP.

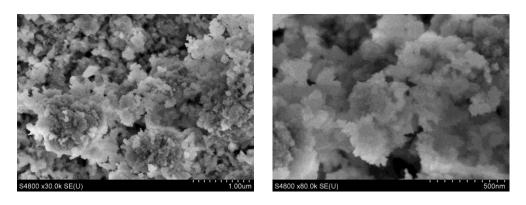
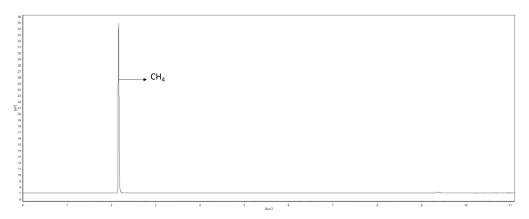



Figure S1. SEM images of the used parent HBEA.

Figure S2. GC spectra of gaseous products from stearic acid hydrodeoxygenation. Reaction condition: 5.0 g stearic acid, 0.2 g Ni/HBeta, 80 mL dodecane, 260 $^{\circ}$ C, 4 MPa H₂, stirring at 600 rpm.

Figure S3. Images of four catalyst recycling runs during palm oil upgrading.

 $R_1^=$, $R_2^=$, $R_3^=$: unsaturated alkyl chain (mainly C_{16} , C_{18}) Methanation: $CO + H_2 = CH_4 + H_2O$

Scheme S1. Proposed reaction pathways for one-step transformation of palm oil to alkanes over Ni/HBeta.

Reference:

1. W. Song, C. Zhao, J. A. Lercher, Chem. Eur. J. 2013, 19, 9833.