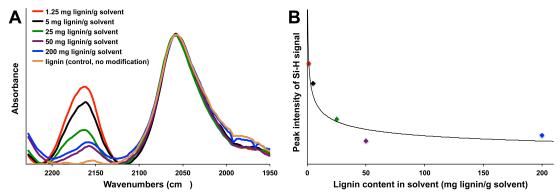

Electronic Supplementary Material (ESI) for Green Chemistry. This journal is © The Royal Society of Chemistry 2015

Utilization of softwood lignin as both crosslinker and reinforcing agent in silicone elastomers

Jianfeng Zhang, ^a Yang Chen, ^a Paul Sewell^a and Michael. A. Brook, *^a

Electronic Supporting Information

Equipment associated with titration of the lignin surface:


Scheme S1. The water displacement method for gas production measurement.

Chemistry associated with titration of the lignin surface:

$$\begin{array}{c} \text{HO} \\ \text{O} \\ \text{O} \\ \text{O} \\ \text{O} \\ \text{SiR}_3 \\ \text{SiR}_3 \\ \text{SiR}_3 \\ \text{SiR}_3 \\ \text{SiR}_3 \\ \text{SiR}_3 \\ \text{Gas} \\ \text{SiR}_3 \\ \text{Figs: O-SiR}_3 \\ \text{Gas} \\ \text{SiR}_3 \\ \text{Figs: O-SiR}_3 \\ \text{SiR}_3 \\$$

Without considering the reactivity of each functional groups

Scheme S2. The molar ratio of reactive surface functional group to gaseous by-product (5 equiv./4 equiv.)

Figure S1. The DRIFT-IR spectrum for lignin particles titrated with different concentration in solvent. (A) and (B) The intensity of "Si-H" peak dropped with the increasing of lignin content in solvent (mg lignin/g solvent).

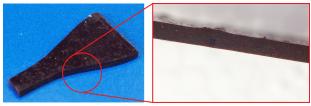
Demonstrated calculation for optimal formulations: balancing available functional group on lignin with [SiH]:

- 1. The equivalence of hydride:
 - If 800 mg of lignin was require in 1000 mg of DMS-H31 for \sim 40% weight ratio
 - The hydride that lignin could consume: $800 \text{ mg} \times 0.8 \mu\text{mol/mg} \times 2 = 1280 \mu\text{mol}$ (Note, the reason for "× 2" refers to **Scheme S2**).
- 2. The hydride of DMS-H31:
 - If 1000 mg of DMS-H31 was required
 - The hydride content: $1000 \text{ mg} \times 0.07 \text{ } \mu\text{mol/mg} = 70 \text{ } \mu\text{mol}$
- 3. The 70 μ mol of hydride is not enough for 1280 μ mol equivalence hydride required for lignin surface reaction, therefore, a co-crosslinker (HMS-301, 501, or 992) was required.
- 4. The hydride required to be provide by HMS-992:
 - If hydride to reactive surface functional group on lignin was set to 1/2

The hydride required by HMS-992 = $(1280 - 70 \times 2)/2 = 570$ µmol

The mass of HMS-992 required = $570 \mu mol/16.67 \mu mol/mg = 34.2 mg$

• If hydride to reactive surface functional group on lignin was set to 2/1


The hydride required by HMS-992 = 1280×2 - $70 = 2490 \mu mol$ The mass of HMS-992 required = $2490 \mu mol/16.67 \mu mol/mg = 149.4 mg$

• If hydride to reactive surface functional group on lignin was set to 4/1

The hydride required by HMS-992 = $1280 \times 4 - 70 = 5050 \mu mol$ The mass of HMS-992 required = $5050 \mu mol/16.67 \mu mol/mg = 302 mg$

Table S1. Example formulation of lignin (SKL from Weyerhaeuser, 40.9%) as crosslinker/reinforcement in silicone elastomer. a co-crosslinker (HMS-992) was used for keeping the chemical stoichiometry of hydride to surface functional group of lignin close to 1:1.

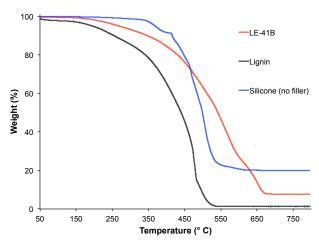
Lignin (mg)	DMS-H31 (mg)	HMS-992 (mg)		
800		34		
	1000	150		
		302		

Figure S2. Images of bubble lignin/silicone elastomers made without solvent, right image is the cross-section of elastomer.

Table S2. The hydride content of hydride functionalized silicone with different chemical structures

	Mw (g/mol)	Chemical structure	Hydride content [Si-H], µmol/mg	
DMS-H11	1175		1.70	
DMS-H21	6000		0.33	
DMS-H31	28000	H' OT OT H	0.07	
DMS-H41	62700		0.03	
HMS-301	1900-2100	/o H\ /o \ o	4.36	
HMS-501	900-1200		7.46	
HMS-992	1800-2100] '\'/m\'/n'	16.67	

Solvent resistance:


Table S3. Solvent resistance of lignin-C/R-elastomer to organic solvents and water

	DMSO	МеОН	H ₂ O	Acetone	IPA	THF	THF/D MSO	Toluene
			_				(1:1)	
Initial (g)	0.0285	0.0244	0.0275	0.0224	0.0218	0.0282	0.0203	0.0270
Swelling (g)	0.0748	0.0396	0.0334	0.0409	0.0315	0.0860	0.0332	0.0466
Swelling ratio (%)	162	62	21	83	44	205	64	73
After extraction (g)	0.0289	0.0237	0.0285	0.0231	0.0249	0.0212	0.0155	0.0257
Weight gain/loss ratio (%) ^a	1	-3	4	3	14	-25	-24	-5

^a The "-" means a weigh loss percentage (loss weight/original weigh × 100%).

Figure S3. Swelling the lignin-C/R-elastomer with different solvent. The diameter ratios before and after swelling are list sequently: 1.32, 1.14, 1.00, 1.12, 1.00, 1.29, 1.41, 1.23, and 1.24 (left is the elastomer swell in solvent, right is control).

Figure S4. TGA thermograms of LE-41B (red), lignin (blue), and silicone (black) under air atmosphere