Supplementary information:

One-pot extraction combined with metal-free photochemical aerobic oxidative desulfurization in deep eutectic solvent

Wenshuai Zhu, * a Chao Wang, a Hongping Li, a Peiwen Wu, a Suhang Xun, a Wei

Jiang, ^b Zhigang Chen, ^a Zhen Zhao ^c and Huaming Li^{* b}

^a School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road,

Zhenjiang 212013, P. R. China

^b Insititute for Energy Research, Jiangsu University, 301 Xuefu Road, Zhenjiang

212013, P. R. China

^c State Key Laboratory of Heavy Oil Processing, Faculty of Science, China University of Petroleum, Beijing 102249, P. R. China

E-mail: zhuws@ujs.edu.cn (W.S. Zhu), lhm@ujs.edu.cn (H.M. Li)

Table S1 The elemental analyses of C_{λ} H_{λ} N in the as-prepared DESs

- Scheme S1 The picture of reaction equipment
- Fig. S1 FT-IR spectra of ChCl·2HCOOH
- Fig. S2 FT-IR spectra of ChCl·2CH₃CH₂COOH
- Fig. S3 FT-IR spectra of ChCl·2CH₃(CH₂)₂COOH
- Fig. S4 FT-IR spectra of ChCl·2CH₃(CH₂)₃COOH
- Fig. S5¹ H NMR spectrum of ChCl
- **Fig. S6**¹ H NMR spectrum of CH₃COOH
- Fig. S7¹ H NMR spectrum of ChCl·2CH₃COOH
- Fig. S8 Scan of potential energy surface for IBA with O_2 reaction

DES		С %	Н %	N %
ChCl·2HCOOH	Calculate Value	36.29	7.83	6.05
	Analysis Found	35.46	7.91	5.91
ChCl·2CH ₃ COOH	Calculate Value	41.61	8.54	5.39
	Analysis Found	40.75	8.59	5.28
ChCl·2C ₂ H ₅ COOH	Calculate Value	45.91	9.11	4.87
	Analysis Found	45.06	9.15	4.76
ChCl·2C ₃ H ₇ COOH	Calculate Value	49.43	9.57	4.43
	Analysis Found	48.61	9.61	4.36
ChCl·2C ₄ H ₉ COOH	Calculate Value	52.39	9.96	4.07
	Analysis Found	51.58	9.98	4.01

Table S1 The elemental analyses of C_{Σ} H $_{\Sigma}$ N in the as-prepared DESs

Scheme S1 The picture of reaction equipment

Fig. S3 FT-IR spectra of ChCl·2CH₃(CH₂)₂COOH a. CH₃(CH₂)₂COOH; b. ChCl; c. ChCl·2CH₃(CH₂)₂COOH

Fig. S4 FT-IR spectra of ChCl·2CH₃(CH₂)₃COOH a. CH₃(CH₂)₃COOH; b. ChCl; c. ChCl·2CH₃(CH₂)₃COOH

Fig S7¹ H NMR spectrum of ChCl·2CH₃COOH

Fig. S8 Scan of potential energy surface for IBA with O_2 reaction