Supplementary Information

Molybdenum Incorporated Mesoporous Silica Catalyst for Production of Biofuels and Value-added Chemicals via Catalytic Fast Pyrolysis

Sridhar Budhi,^{a,b,} Calvin Mukarakate,^{a,*} Kristiina Iisa,^a Svitlana Pylypenko,^b Peter N. Ciesielski,^a Matthew M. Yung,^a Bryon S. Donohoe,^a Rui Katahira,^a Mark R. Nimlos^a and Brian G. Trewyn^{b*}

Table S1: Total acidity of catalysts evaluated from NH₃-TPD and Bronsted and Lewis acidity based on pyridine DRIFTS and ammonia chemisorption.

Catalyst	Total Acidity (μmol g ⁻¹)	Bronsted Acidity (μmol g ⁻¹)	Lewis Acidity (µmol g ⁻¹)
0.25g-Mo	55	2	53
1g-Mo	77	1	76
2g-Mo	98	2	96

Table S2: Elemental composition of catalyst from EDS analysis

Catalyst	Oxygen (wt %)	Silicon (wt %)	Molybdenum (wt %)
0.25g-Mo	32.7 ± 6.8	61.1 ± 5.7	6.1 ± 1.9
1g-Mo	30.8 ± 8.6	66.1 ± 8.6	3.1 ± 0.5
2g-Mo	31.8 ± 11.8	63.0 ± 14.7	5.2 ± 8.0

Table S3: List of compounds identified by py-GCMS through fast pyrolysis of pine using 2g-Mo catalyst at biomass to catalyst ratio of 1:10

m/z	Compound	Structure
16	methane	CH ₄
18	Water	н,0,н
40	Propyne	
42	Propene	
44	Acetaldehyde	\sim_0
44	Carbon dioxide	0=C=0
54	Cyclobutene	
56	2-propenal	0
58	Acetone	
60	Acetic acid	ОН
66	1,3-cyclopentadiene	

66	1-Buten-3-yne, 2-methyl-	
68	Furan	
70	2,3-dihydrofuran	
70	3-buten-2-one	
70	2-butenal	0
72	2-butanone	
74	Propanoic acid	ОН
78	Benzene	\bigcirc
78	Cyclopenetene, 1- methyl-	
80	1,3-cyclopentadiene, 1- methyl-	
82	Furan, 2-methyl-	
84	3-buten-2-one, 3-methyl-	$\mathbf{M}^{\mathbf{O}}$
84	3-penten-2-one	
86	Butyrolactone	

94	Phenol	ОН
96	Furan, 2,5-dimethyl-	
96	Furfural	
96	2-cyclopentene-1,4- dione	
96	2-cyclopenten-1-one, 2- methyl-	
106	p- xylene	
108	Phenol, 3-methyl-	НО
116	Indene	
118	Benzofuran	
130	1H-Indene, 1-methyl-	
134	Benzene, 1-methyl-4-(1- methylethyl)-	
134	Benzene, 1-methyl-2-(1- methylethyl)-	

170	Naphthalene, 1,4,6,- trimethyl-	
234	Phenanthrene, 1-methyl- 7-(1-methylethyl)-	

Figure S1. Pore size distribution profiles of all three catalysts calculated by the BJH method.

Figure S2. Temperature programmed desorption profile of ammonia for the catalysts investigated for fast pyrolysis of biomass and its biopolymers cellulose and lignin. Profiles are offset for clarity

Figure S3. EDS mapping of 1g-Mo catalyst particles used to measure dispersion of active species within the catalysts.

Figure S4. Nitrogen adsorption and desorption isotherm of KIT-5 mesoporous silica support.