Supplementary Figure 1

1	MAPISLSWLL	RLATFCHLTV	LLAGLESHWC	YEVQAESSNY	PCLVPVKWGG	NCQKDRQSP I
61	NIVTTKAKVD	KKLGRFFFSG	YDKKQTWTVQ	NNGHSVMMLL	ENKAS I SGGG	LPAPYQAKQL
121	HLHWSDLPYK	GSEHSLDGEH	FAMEMHIVHE	KEKGTSRNVK	EAQDPEDEIA	VLAFLVEAGT
181	QVNEGFQPLV	EALSNIPKPE	MSTTMAESSL	LDLLPKEEKL	RHYFRYLGSL	TTPTCDEKVV
241	WTVFREPIQL	HREQILAFSQ	KLYYDKEQTV	SMKDNVRPLQ	QLGQRTVIKS	GGGGTFEKQI
301	GEVKPRTTPA	AGGMDESVVL	EPEATGESSS	LEPTPSSQEA	QKALGTSPEL	PTGVTGSSGT
361	RLPPTPKAQD	GGPVGTELFR	VPPVSTAATW	QSSAPHQPGP	SLWAEAKTSE	APSTQDLSTQ
421	ASTASSPAPE	ENAPSEGQRV	WGRGQSPRPE	NSLEREEMGP	VPAHTDAFQD	WGPGSMAHVS
481	VVPVSSEGTP	SREPVASGSW	TPKAEEP I HA	TMDPQRLGVL	ITPVPDAQAA	TRRQIIPIVA
541	GVVAGIVLIG	LALLL I WGGG	GGGAIYENPF	ARK		
1	ATGGCTCCGA	TATCTCTGTC	GTGGCTGCTC	CGCTTGGCCA	CCTTCTGCCA	TCTGACTGTC
61	CTGCTGGCCG	GTCTAGAGTC	ACACTGGTGC	TACGAGGTTC	AAGCCGAGTC	CTCCAACTAC
121	CCCTGCTTGG	TGCCAGTCAA	GTGGGGTGGA	AACTGCCAGA	AGGACCGCCA	GTCCCCCATC
181	AACATCGTCA	CCACCAAGGC	AAAGGTGGAC	AAAAAACTGG	GACGCTTCTT	CTTCTCTGGC
241	TACGATAAGA	AGCAAACGTG	GACTGTCCAA	AATAACGGGC	ACTCAGTGAT	GATGTTGCTG
301	GAGAACAAGG	CCAGCATTTC	TGGAGGAGGA	CTGCCTGCCC	CATACCAGGC	CAAACAGTTG
361	CACCTGCACT	GGTCCGACTT	GCCATATAAG	GGCTCGGAGC	ACAGCCTCGA	TGGGGAGCAC
421	TTTGCCATGG	AGATGCACAT	AGTACATGAG	AAAGAGAAGG	GGACATCGAG	GAATGTGAAA
481	GAGGCCCAGG	ACCCTGAAGA	CGAAATTGCG	GTGCTGGCCT	TTCTGGTGGA	GGCTGGAACC
541	CAGGTGAACG	AGGGCTTCCA	GCCACTGGTG	GAGGCACTGT	CTAATATCCC	CAAACCTGAG
601	ATGAGCACTA	CGATGGCAGA	GAGCAGCCTG	TTGGACCTGC	TCCCCAAGGA	GGAGAAACTG
661	AGGCACTACT	TCCGCTACCT	GGGCTCACTC	ACCACACCGA	CCTGCGATGA	GAAGGTCGTC
721	TGGACTGTGT	TCCGGGAGCC	CATTCAGCTT	CACAGAGAAC	AGATCCTGGC	ATTCTCTCAG
781	AAGCTGTACT	ACGACAAGGA	ACAGACAGTG	AGCATGAAGG	ACAATGTCAG	GCCCCTGCAG
841	CAGCTGGGGC	AGCGCACGGT	GATAAAGTCC	GGGGGAGGAG	GTACCTTCGA	GAAGCAGATC
901	GGCGAGGTGA	AGCCCAGGAC	CACCCCTGCC	GCCGGGGGAA	TGGACGAGTC	TGTGGTCCTG
961	GAGCCCGAAG	CCACAGGCGA	AAGCAGTAGC	CTGGAGCCGA	CTCCTTCTTC	CCAGGAAGCA
1021	CAGAAGGCCC	TGGGGACCTC	CCCAGAGCTG	CCGACGGGCG	TGACTGGTTC	CTCAGGGACC
1081	AGGCTCCCCC	CGACGCCAAA	GGCTCAGGAT	GGAGGGCCTG	TGGGCACGGA	GCTTTTTCCGA
1141	GTGCCTCCCG	TCTCCACTGC	CGCCACGTGG	CAGAGTTCTG	CTCCCCACCA	ACCTGGGCCC
1201	AGCCTCTGGG	CTGAGGCAAA	GACCTCTGAG	GCCCCGTCCA	CCCAGGACCT	CTCCACCCAG
1261	GCCTCCACTG	CGTCCTCCCC	AGCCCCAGAG	GAGAATGCTC	CGTCTGAAGG	CCAGCGTGTG
1321	TGGGGTCGGG	GACAGAGCCC	CAGGCCAGAG	AACTCTCTGG	AGCGGGAGGA	GATGGGTCCC
1381	GTGCCAGCGC	ACACGGATGC	CTTCCAGGAC	TGGGGGCCTG	GCAGCATGGC	CCACGTCTCT
1441	GTGGTCCCTG	TCTCCTCAGA	AGGGACCCCC	AGCAGGGAGC	CAGTGGCTTC	AGGCAGCTGG
1501	ACCCCTAAGG	CTGAGGAACC	CATCCATGCC	ACCATGGACC	CCCAGAGGCT	GGGCGTCCTT
1561	ATCACTCCTG	TCCCTGACGC	CCAGGCTGCC	ACCCGTCGAC	AGATCATTCC	AATTGTAGCT
1621	GGTGTGGTTG	CTGGAATTGT	TCTTATTGGC	CTTGCATTAC	TATTAATATG	GGGTGGCGGA
1681	GGGGGAGGTG	CTATATATGA	AAATCCATTT	GCAAGAAAAT	AA	

Fig S1. The amino acid (top) and nucleotide (bottom) sequences of the artificial receptor. The receptor consists of 4 domains: carbonic anhydrase IV (orange), fraktalkine stalk (blue), transmembrane helix (red), and the Abl substrate sequence (green). The active tyrosine is in bold.

Supplementary Figure 2

1	MLEKHSWYHG	PVSRNAAEYL	LSSGINGSFL	VRESESSPGQ	RSISLRYEGR	VYHYRINTAS
61	DGKLYVSSES	RFNTLAELVH	HHSTVADGL I	TTLHYPGTSD	TVDMGVIKPD	MKIKLRMEGA
121	VNGHKFVIEG	DGKGKPFEGK	QTMDLTVIEG	APLPFAYDIL	TTVFDYGNRV	FAKYPKDIPD
181	YFKQTFPEGY	SWERSMTYED	QGICIATNDI	TMMKGVDDCF	VYKIRFDGVN	FPANGPVMQR
241	KTLKWEPSTE	KMYVRDGVLK	GDVNMALLLE	GGGHYRCDFK	TTYKAKKVVQ	LPDYHFVDHR
301	IEIVSHDKDY	NKVKLYEHAE	AHSGLPRQAG	*		
1	ATGCTGGAGA	AACATTCCTG	GTATCATGGC	CCTGTATCTC	GGAATGCTGC	TGAGTATCTG
61	CTGAGCAGCG	GAATCAACGG	CAGCTTCTTA	GTGCGGGAGA	GTGAGAGTAG	CCCTGGCCAG
121	AGATCCATCT	CGCTGCGGTA	TGAAGGGAGG	GTGTACCACT	ACAGGATCAA	CACTGCCTCT
181	GATGGCAAGC	TGTACGTGTC	CTCCGAGAGC	CGCTTCAACA	CTCTGGCTGA	GTTAGTTCAC
241	CATCACTCCA	CGGTGGCTGA	TGGCCTCATC	ACCACACTCC	ACTACCCAGG	CACCTCCGAC
301	ACCGTCGACA	TGGGCGTGAT	CAAGCCCGAC	ATGAAGATCA	AGCTGCGGAT	GGAGGGCGCC
361	GTGAACGGCC	ACAAATTCGT	GATCGAGGGC	GACGGGAAAG	GCAAGCCCTT	TGAGGGTAAG
421	CAGACTATGG	ACCTGACCGT	GATCGAGGGC	GCCCCCTGC	CCTTCGCTTA	TGACATTCTC
481	ACCACCGTGT	TCGACTACGG	TAACCGTGTC	TTCGCCAAGT	ACCCCAAGGA	CATCCCTGAC
541	TACTTCAAGC	AGACCTTCCC	CGAGGGCTAC	TCGTGGGAGC	GAAGCATGAC	ATACGAGGAC
601	CAGGGAATCT	GTATCGCTAC	AAACGACATC	ACCATGATGA	AGGGTGTGGA	CGACTGCTTC
661	GTGTACAAAA	TCCGCTTCGA	CGGGGTCAAC	TTCCCTGCTA	ATGGCCCGGT	GATGCAGCGC
721	AAGACCCTAA	AGTGGGAGCC	CAGTACCGAG	AAGATGTACG	TGCGGGACGG	CGTACTGAAG
781	GGCGATGTTA	ATATGGCACT	GCTCTTGGAG	GGAGGCGGCC	ACTACCGCTG	CGACTTCAAG
841	ACCACCTACA	AAGCCAAGAA	GGTGGTGCAG	CTTCCCGACT	ACCACTTCGT	GGACCACCGC
901	ATCGAGATCG	TGAGCCACGA	CAAGGACTAC	AACAAAGTCA	AGCTGTACGA	GCACGCCGAA
961	GCCCACAGCG	GACTACCCCG	CCAGGCCGGC	TAA		

Fig. S2. The amino acid (top) and nucleotide (bottom) sequences of the SH2_{Abl}-**GFP reporter protein.** The SH2_{Abl} portion of the protein is colored blue, and the GFP portion is colored green. Electronic Supplementary Material (ESI) for Integrative Biology This journal is C The Royal Society of Chemistry 2011

Supplementary Figure 3

Fig. S3. Receptor expression analyzed by flow cytometry. Live cells were treated with anti-CAIV antibody and analyzed for their expression of the receptor. As shown here, the receptor is expressed well and trafficked to the membrane in the appropriate direction.

Electronic Supplementary Material (ESI) for Integrative Biology This journal is © The Royal Society of Chemistry 2011

Supplementary Figure 4

Figure S4. Dose dependence of inhibition. Receptor expressing cells were treated with either soluble BzS (**a**) or imatinib (**b**) in the presence of beads. Phosphorylation was reduced in a dose dependent fashion.