
Supporting Information

Analysis of Sprout Spatial Distribution and Simulation

The 2D distances along the arc of the microcarriers were used as a proxy for the 3D distances.
Fig. S1 shows the scatter plot of the 2D and 3D distances of pairs of sprouts (that are visible on
the 2D projection) randomly placed on the surface of a microsphere.
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Figure S1: Scatter plot of 3D vs 2D distances of randomly placed sprouts. It can be seen that
although there is not a one-to-one relationship, the 2D distances serve as a reasonble proxy for
the 3D geodesic distances. The 3D geodesic distances were calculated with Vincenty’s formula for
spheres.

In the simulation of Fig. 2d), the experimental size distribution of the microcarrier radius
was collected (Fig. S2) as an estimate of pmf fR(r) and was resampled during simulation to
generate the radii r. While the variation in the radius of the microcarrier r appeared too small to
affect the number of sprouts ns, data was collected to ensure this independence (Fig. S3). The
correlation between ns and r, nS and r2, ns and ln(r) are respectively −0.067, −0.064, −0.072.
These correlations are all insignificant, and in fact slightly negative, which further contradicts the
notion that there may be more sprouts with greater surface area. Furthermore, regressions of ns
on r,r2, ln(r) also yield insignificant slopes. Thus, ns does not seem to depend on r in this assay,
and the marginal probability mass function fNs

(ns) can be used.
Similarly, ns were generated by resampling the empirical distribution in Fig. 2a. Once ns

was drawn, the location (θ, φ) of each sprout was drawn from fΘ(θ) = 1
2π and fΦ(φ) = 1

2 sinφ.
The length of the sprout l was also resampled from the empirical data (Fig. S4). We chose to use
the empirical distribution from the control experiment (The empirical distributions of ns and l in
both control and +DAPT gave almost identical simulation results). A sprout was determined to be
visible if it protruded from the edge of the circle in the 2D maximum intensity projection, namely
if (l + r) sinφ > r. The distance between each visible pair of the ith and jth sprouts was then
computed: di,j = r(min(|θi − θj |, 2π − |θi − θj |). Note that the distribution of di,j generated from
this simulation is different from merely r · θ where r is distributed as the experimental distribution
and θ distributed as U [0, π). This is because 1) the number of visible sprouts in a microcarrier
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Figure S2: Histogram of radii of microcarriers, collected using a Hough transform algorithm on
images of blank microcarriers (n > 2000).
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(a) ns vs r
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(b) ns vs r2

Figure S3: There appears to be no correlation between the number of sprouts ns and radius of
microcarrier r.

depends on the realization of r, and 2) di,j in the same microcarrier are dependent variables. They
lead to the fact that the actual distribution of di,j depends intricately on the distribution of r and
θ.

Sprout Detection Algorithm

Three-dimensional stacks of fluorescent images were loaded in Matlab. Images were first filtered
with a 3D median filter with filter window size = 1 pixel. Each Z-slice was then further filtered
with a 2D low pass filter with 1 pixel characteristic length scale of noise and 30 pixel characteristic
object length. The first step in the measurement of sprout initiation was to identify the spherical
microcarrier in each image. In the event when there were multiple microcarriers in view, the one
closest to the center of the image was chosen. The radius r and center (xc, yc) of the microcarrier
were determined using the generalized Hough transform to detect circles [1, 2].

On a grayscaled image, let the pixel intensity of pixel u be s(u). Edges of objects can be
detected by computing the edge pixels ue, which are those pixels where the magnitude of the
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Figure S4: Histograms of sprout lengths (n > 500 each).

gradients are greater than a threshold g. Namely,

ue ⊆ u 3 ‖∇s(ue)‖ > g

Central to the method of Hough algorithm for analytic curves was the accumulation function
A(a). For a specific curve f(x,a) = 0 with parameter vector a, A(a) was initialized to zero. Then
for each ue, solve for all as that satisfied the following equation:

f(ue,as) = 0

In the special case of circle detection, this equation is equivalent to:

(x− x0)2 + (y − y0)2 − r2
0 = 0

For each edge pixel ue, all the circles parameterized by as = (x0, y0, r0) containing ue are
incremented in the accumulator function:

A(as) = A(as) + 1

Note that in the algorithm, r0 was assumed to lie in a fixed range rl ≤ r0 ≤ ru. as was obtained
by assuming a particular r0 in this range and solving for (x0, y0). This is repeated for all other
values of r0 in a fixed range. After each edge pixel ue is considered, the global maximum in A(as)
corresponds to the circle with radius r0 and center (x0, y0) with the most votes from all the edge
pixels.

This algorithm was implemented in Matlab, and the psuedocode for choosing a center of a
circle was:
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HoughCircle() {

FilterImage();

ueAll=find(gradient>threshold);

for ue in ueAll {

for r0 in rRange{

(x0,y0) = Solve(f(x,y,r)=0);

A(r0,x0,y0) = A(r0,x0,y0)+1;

}

}

[maxValue,ChosenCenter]=max(A(r0,x0,y0));

return ChosenCenter;

}

This was done at each Z-plane (cyan circle on Fig. S5). On each Z-slice, two larger circles
with radius r + 10 and r + 45 pixels was imposed around the center of the detected microcarrier
(yellow and blue circles on Fig. S5). Any intensity protrusion within this ring was recorded. Fig.
S5 illustrates the intensity protrusions on a particular Z-plane. By combining all the Z-slices, three-
dimensional intensities were recorded around the microcarriers. In this three dimensional space,
blocks of intensities that exceeded volume and intensity thresholds were counted as a sprout.
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Figure S5: Demonstration of intensity protrusions on the (r, θ) space. The intensities in the ring
around the microcarrier (between the yellow circle and the blue circle) are plotted on the r − θ
space for a particular Z plane. The numbers denote the corresponding protrusions on the (x, y)
space and (r, θ) space. When sprout detection was done, blocks of intensities on the 3D (r, θ, Z)
space were identified.
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Statistical Inference of ra

We want to test the significance of the intraclass correlation coefficient ρ against the following
hypothesis of ρ = 0:{
H0 : ρ = 0

Ha : ρ 6= 0

This can be done with a simple F test. The test statistic is the variance ratio, computed as
F = MSA

MSW , which follows the F-distribution with degrees of freedom da = k − 1 and dw = N − k.
The squared errors of the estimated intraclass correlation were approximated by [3]:

σ̂2 ' 2(N − 1)(1− ra)2[1 + (u− 1)ra]2

u2(N − k)(k − 1)

where

u =
1

k − 1
(N −

∑
n2
i

N
)

To test whether the ρ’s across conditions are equal, a two-sample Z-test was used [4, 5].
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