Antibody [†]	Clone	Immunostaining	ELISA
Runx2	S-19		
Osterix	M-15		\checkmark
Alkaline Phosphatase	N-18	\checkmark	
Osteopontin	AKm2A1	\checkmark	
Osteocalcin	M-15		\checkmark
ΡΡΑRγ	I-18		\checkmark
A-FABP	C-15		\checkmark
Sox 9	C-20	\checkmark	\checkmark
Collagen II	N-19		\checkmark
Collagen X	E-14	\checkmark	\checkmark
Myocardin	M-16		\checkmark
SM22a	P-15		\checkmark
VE-Cadherin	C-19	\checkmark	\checkmark
PECAM-1	M-20		\checkmark
Thrombomodulin	M-17		\checkmark
Ki-67	M-19	\checkmark	
GAPDH	V-15		\checkmark
β-actin	13E5		\checkmark

Supplementary Table 1. Antibodies employed ELISA and immunostaining assessments

 † All antibodies were obtained from Santa Cruz Biotechnology, except for $\beta\text{-actin}$ which was obtained from Cell Signaling

Supplementary Table 2. Osteogenic MSC Literature Involving Tensile Conditioning

Ref	Cells and Scaffold	Mechanical Conditioning and Media Supplements	Time Points and Analyses	Results
5	hBMSCs, 30,000 cells in 200 μL collagen 3D, collagen gel	<i>Conditioning</i> : 1 Hz, 10% or 12% <u>uniaxial tensile</u> strain for 4 h/day <i>Media Supplements</i> : No osteoinductive agents	<i>Time points</i> : 1, 2 weeks <i>Assays</i> : <u>BMP-2</u> - RT-PCR detection	10% Strain vs Unloaded 1 week - 4-fold increase in BMP-2 compared to the unstrained control 2 weeks - 1.65-fold increase in BMP-2 12% Strain vs Unloaded 1 week - no significant differences in BMP-2 2 weeks - 1.75-fold increase in BMP-2
6	hMSCs, seeded at 10,000 cells/cm ² 2D, collagen coated surfaces	Conditioning: 0.25 Hz, 3% equi-biaxial strain (2 s on, 2 s off) Media Supplements: 50 mg/ml AA, 10mM BGP, and 0.1 mM DXM	<i>Time points</i> : 3, 8, 12, 16 days <i>Assays</i> : <u>ALP activity</u> - 50mM p- nitrophenyl phosphate. <u>Mineral deposition</u> - o- cresolphthalein reaction kit	Loaded vs Unloaded <u>ALP activity:</u> no differences at days 3, 8, 12 or 16 <u>Mineral deposition:</u> loading in a 2.3-fold increase after 16 days in culture
7	hBMSCs OR 10T ¹ / ₂ , seeded at 1x10 ⁴ cells/cm ² 2D, flexible silicone rubber BioFlexTM plates coated with collagen I	<i>Conditioning</i> : 0.5 Hz, 3% <u>tensile</u> elongation <i>Media Supplements</i> : 100 nM DXM, 50 mM AA, and 10 mM BGP	<i>Time points</i> : 1, 3, 7, 10 days of loading following 2 days of static culture <i>Assays</i> : <u>ALP activity</u> - p-nitrophenyl phosphate (pNPP) <u>Osteogenic genes</u> - RT-PCR. <u>Runx2 protein</u> - western blot.	hBMSCs - Loaded vs Day 0 Runx2: day 7: no increase; day 10: 62% increase Runx2 protein: day 7: no increase; day 10: 60% increase OP: 7 day: 56% increase; 10 day: 2-fold increase. Collagen I: 7 day: 14% increase; 10 day: 2.3-fold increase ALP: 7 day: 4.7-fold increase; 10 day: 6.7-fold increase hBMSCs - Loaded vs Unloaded Runx2: day 7 60% decrease; day 10: 56% decrease Runx2: day 7 60% decrease; day 10: 56% decrease Runx2: protein: day 7: 70% decrease; day 10: 70% decrease OP: day 7: 50% decrease; day 10: 44% decrease Collagen I: day 7: 53% decrease; day 10: 40% decrease ALP: day 7: -43% decrease; day 10: 32% decrease 10T½ Cells - Day 10 - Loaded vs Day 0 Runx2: day 7: 33% increase; day 10: 78% increase Runx2: protein: day 7: 3.3-fold increase; day 10: 5.2-fold increase OP: day 7: 63% increase; day 10: 3-fold increase. Collagen I: day 7: 39% decrease; day 10: 11% increase. Collagen I: day 7: 39% decrease; day 10: 5.5-fold increase IOT½ Cells - Loaded vs Unloaded Runx2: 7 day: 27% decrease; 10 day: 38% decrease OP: 7 day: 50% decrease; 10 day: 36% decrease OP: 7 day: 50% decrease; 10 day: 63% decrease OP: 7 day: 50% decrease; 10 day: 63% decrease OP
41	Rat MSCs Silicone strips (10 mm x60 mm) coated with collagen I	<i>Conditioning</i> : 0.17 Hz, 2.5% <u>tensile</u> strain <i>Media Supplements</i> : No osteoinductive agents	<i>Time points</i> : 3, 6, 9, 14 <i>Assays</i> : <u>Runx2, Collagen I, and OCN</u> - Immunocytochemistry <u>BMP2</u> - western blot	Loaded vs Unloaded <u>Runx2:</u> 2-fold increase at day 6 <u>Collagen I:</u> 1.76-fold increase at day 6 <u>OCN:</u> 1.5-fold increase at day 6 <u>BMP2:</u> 4.8-fold increase at day 14

Abbreviations: TGF- β 1 Transforming growth factor β 1, AA – ascorbic acid, DXM – dexamethasone, BGP- β -glycerophosphate , PG – proteoglycan, ALP – alkaline phosphatase, OP – osteopontin, OCN – osteocalcin, BSP – bone sialoprotein; HUVEC – human umbilical vein endothelial cells; MSC –mesenchymal stem cells; hBMSCs – human bone marrow-derived MSCs

Supplementary Table 3. Endothelial Cell – MSC Co-Culture Literature

Ref	Cells and Scaffold	Mechanical Conditioning and Media Supplements	Time Points and Analyses	Results
8	EC and BMSC,1x10 ⁴ cells/cm ² 2D study: direct and indirect contact	<i>Conditioning</i> : Static <i>Media Supplements</i> : 50:50 mixture of EC culture medium (EGM2-MV) and BMSC culture medium (α- MEM, 10% FBS)	<i>Time points</i> : 3, 14 days <i>Assays</i> : <u>ALP activity</u> - colorimetric assay <u>OCN</u> – ELISA	Direct Contact EC-MSC Co-Culture vs Mono- Culture (1:1 ratio) <u>ALP</u> : at 2 wks, a 2-fold increase was observed in co-cultured BMSCs <u>OCN</u> : a 1.4-fold increase in OCN expression in co-cultured BMSCs <i>Indirect Contact</i> No significant differences - data not shown
9	hMSC and HUVEC 15,000 cells each per spheroid (30,000 cells per spheroid) 3D study	<i>Conditioning</i> : Static <i>Media Supplements</i> : 5 mM BGP, 50 µg/mL AA, and 10 nM DXM	<i>Time points</i> : 7, 14 days <i>Assays</i> : <u>ALP levels</u> - fluorescence images	MSCs and ECs Directly Co-cultured at a 1:1 Ratio <u>ALP levels</u> : At day 7, ~ 5 times higher in MSC/HUVECs than in HDFa/MSC controls. At day 14, ~ 26 times higher in MSC/HUVECs than in HDFa/MSC controls
10	HUVEC and hMSC 5x10 ⁵ cells/spheroid 3D study	<i>Conditioning:</i> Static <i>Media Supplements:</i> 10% FBS, 0.2mM AA, 2 mM L- glutamine, 10 nM DXM, and 0.01M BGP	<i>Time points</i> : 10 days <i>Assays</i> : <u>ALP</u> - RT-PCR	<i>EC-hMSC Spheroids with 100% hMSCs or 95%</i> <i>hMSCs Plus 5% HUVECs</i> <u>ALP</u> : 4-fold increase (plus or minus 1.7) by adding 5% HUVECs to the spheroids
42	MSC and HUVEC 3x10 ³ cells/cm ² 2D co-culture: direct contact	<i>Conditioning</i> : Static <i>Media Supplements</i> : Basal: M199 +DMEM Osteogenic media: DMEM+ M199 with 10 mM BGP, 10 nM DXM, 50 µg/mL AA	<i>Time points</i> : 1, 2, 3 weeks <i>Assays</i> : <u>Osteogenic genes</u> - RT- PCR <u>ALP activity</u> - 2 mM ρ- nitrophenol phosphate	MSC-EC Co-Culture vs Mono-cultureALP: 50% higher levels in co-cultureCollagen I: 2.2-fold higher levels in co-cultureBSP: 7.5-fold increase in co-culture at 1 weekRunx2: 50% increase in co-culture at 1 weekOCN: no significant differencesMSC-EC Co-Culture vs Day 0ALP: day 7: 2-fold increase; day 14: 3.8-foldincrease; day 21: 4-fold increase.Collagen I: day 7: 1.3-fold increase; day 14: 1.4fold increase; day 21: 1.7-fold increaseBSP: day 7: 11.5-fold increaseDifferent EC-MSC Cell Ratios:Basal conditions: ALP activity increased in co-co-cultures after 3 wks. 25%EC-75%MSC: 29-fold;50%EC-50%MSC: 18-foldOsteogenic conditions: ALP activity increased in 3wk co-cultures: 25%EC-75%MSC: 3.5 fold;50%EC-50%MSC: 3.7 fold 25%EC-75%MSC

Abbreviations: TGF- β 1 Transforming growth factor β 1, AA – ascorbic acid, DXM – dexamethasone, BGP- β -glycerophosphate , PG – proteoglycan, ALP – alkaline phosphatase, OP – osteopontin, OCN – osteocalcin, BSP – bone sialoprotein; HUVEC – human umbilical vein endothelial cells; MSC –mesenchymal stem cell; hMSC – human MSCs

Supplementary Figure 1. (A) The phenotype of "cemented" ECs was evaluated relative to conventionally "seeded" ECs, i.e. "cemented" ECs were compared to ECs which had been seeded as a confluent monolayer on the surface of PEGDA hydrogels containing cell adhesion ligand RGDS. Competitive ELISAs indicated that ECs in both contexts expressed similar levels of VE-Cadherin and PECAM-1, markers associated with EC intercellular junctions and permeability regulation. Furthermore, competitive ELISAs were conducted for thrombomodulin, a protein downregulated following EC damage.⁴³ As for VE-Cadherin and PECAM-1, levels of thrombomodulin were similar for both "cemented" and conventionally "seeded" ECs. These results are consistent with a previous study demonstrating that "cemented" ECs display a similar phenotype as conventionally "seeded" ECs.¹⁶ (B) "Cemented" EC layers immunostained for VE-Cadherin, PECAM-1, and Ki-67 (a nuclear protein associated with cell proliferation). Scale bar = $40 \mu m$.

Supplementary Figure 2. Comparison of day 22 sox9 levels as assessed by ELISA and cell counting techniques. For ELISA assays, 3-4 samples per treatment group were analyzed. For cell counts, sections from at least 3 separate samples of each treatment group were evaluated. The degree of correlation between the two assessment techniques was 99.2% by Pearson's correlation coefficient method.