Video 1 Sub-confluent MDCK cells migrating on a 200 μ m diameter fibronectin pattern. Time stamp shows hours: minutes.

Video 2 Confluent MDCK cells exhibiting synchronized rotation on a 200 μ m diameter fibronectin pattern. Time stamp shows hours: minutes.

Video 3 Collective behavior persists in over-confluent MDCK cells on a 200 μ m diameter fibronectin pattern. Time stamp shows hours: minutes.

Video 4 200 μ m diameter micropatterns were repopulated with fresh cells after removing confluent cells. The coordinated rotational motion of epithelial cells was only promoted when cells reached a confluent state. Time stamp shows hours: minutes.

Video 5 MDCK cells migrating on a 100 μ m fibronectin pattern exhibiting synchronized rotation after reaching confluence. Time stamp shows hours: minutes.

Video 6 MDCK cells migrating on a 500 μ m diameter fibronectin pattern showing a localized 'vortex' ~ 300 μ m in diameter. Time stamp shows hours: minutes.

Video 7 Numerical simulation of sub-confluent cell clusters confined to a disc. Cell clusters do show coordination, although the collective patterns are evolving over time due to the lack of interaction with static boundaries.

Video 8 Numerical simulation of cells migrating within a confined disc of size equal to the correlation length of the system.

Video 9 Numerical simulation of cells migrating within a confined disc of size larger than the correlation length of the system.

Video 10 Numerical simulation of cells migrating within a confined disc of size much larger than the correlation length of the system.

Video 11 Snail-1-MDCK cells on 200 μ m diameter fibronectin pattern showing collective behavior. However, the rotation is not persistent and changes direction abruptly. Time stamp shows hours: minutes.

Video 12 Manual tracking of Snail-1-MDCK nuclei on 200 μ m diameter fibronectin pattern showing how cells tend to move from the edge of the pattern to the center of the pattern and vice versa.

Video 13 Manual tracking of wt-MDCK nuclei on 200 μ m diameter fibronectin pattern. Unlike Snail-1-MDCK cells, wt-MDCK have little tendency to move from the edge of the pattern to the center or vice versa. Time stamp shows hours: minutes.

Video 14 Numerical simulation of non-cohesive cells migrating within a confined disc. Ordered migration is observed only transiently similar to experimental observations in Snail-1-MDCK cells. Time stamp shows hours: minutes.

Video 15 MCF-10A cells (benign breast cancer cells) migrating on 200 μ m fibronectin patterns. Cells closer to the edge of the pattern show a collective behavior but those in the centre migrate randomly. Time stamp shows hours: minutes.

Video 16 MCF-7 cells (invasive breast cancer cells) migrating on 200 μ m fibronectin patterns showing little tendency for collective behavior. Time stamp shows hours: minutes.

Video 17 MDA-MB-231 cells (invasive breast cancer cells) migrating on 200 μ m fibronectin patterns showing little tendency for collective behavior. Time stamp shows hours: minutes.