Wearable Multi-Channel Microelectrode Membranes to Reveal Injured Cardiac Electrical

Signals of Small Vertebral Animals

Hung Cao^{*1,4,7}, Yu Zhao^{*2}, Fei Yu¹, Xiaoxiao Zhang², Joyce Tai⁶, Juhyun Lee^{1,4,7}, Ali Darehzereshki⁵, Malcolm Bersohn^{4,7}, Ching-Ling Lien⁵, Neil C. Chi³, Yu-Chong Tai², Tzung K. Hsiai^{1,4,7}

*Two authors contributed equally

¹Department of Bioengineering, University of California, Los Angeles, CA
²Department of Electrical Engineering, California Institute of Technology, Pasadena, CA
³Division of Cardiology, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA
⁴Division of Cardiology, Department of Medicine, School of Medicine, University of California, Los Angeles, CA
⁵Children's Hospital Los Angeles, Los Angeles, CA
⁶Tufts University, Medford, MA, USA
⁷VA Greater Los Angeles Healthcare System

Corresponding Author:

Tzung K. Hsiai, M.D., Ph.D.

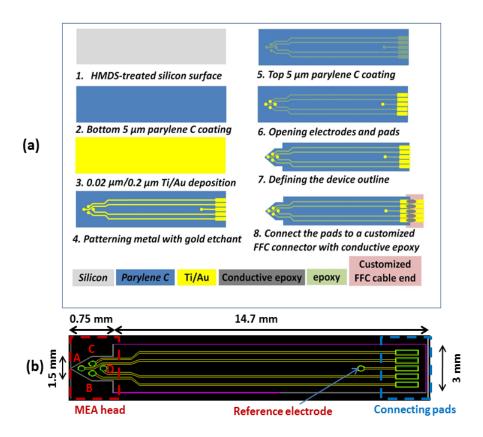
Department of Medicine (Cardiology), Bioengineering, and Physiology

David Geffen School of Medicine

Henry Samueli School of Engineering and Applied Science

University of California, Los Angeles, Los Angeles, CA 90073

Email THsiai@mednet.ucla.edu


Fax: (310) 268-4822

List of Supplemental Figures

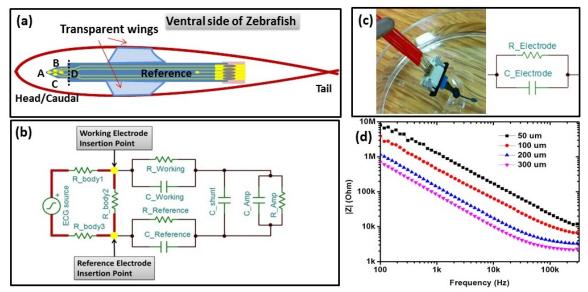

Fig. S1. Micro-fabrication of the flexible MEA membrane. (a) Step-by-step fabrication processes resulted in a 4-lead ECG. (b) Schematic diagram of the MEA membrane highlighted 4 working electrodes A, B, C and D, respectively, in the MEA head, the reference electrode and contact pads in the rear.

Fig. S2. Characterization of the MEA impedance. (a) The flexible MEA membrane was placed on the chest of the zebrafish. (b) Equivalent circuit model consisted of 1) the front-end planar metal electrodes in contact with contracting heart (signal source), and 2) the rear-end instrumentation amplifier associated with high input impedance. (c) Characterization set-up. (d) Impedance increased in response to a decrease in the diameter of the electrode.

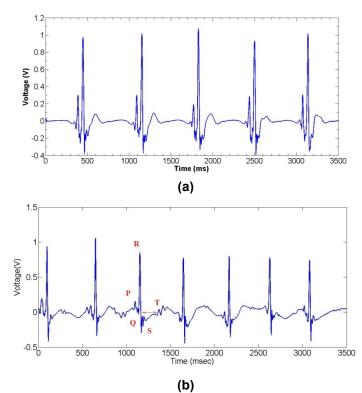

Fig. S3. ECG of fish sham – before injury (a) and (b) at 8 weeks after injury showing ST segment failed to normalize to baseline.

Fig. S1. Micro-fabrication of the flexible MEA membrane. (a) Step-by-step fabrication processes resulted in a 4-lead ECG. (b) Schematic diagram of the MEA membrane highlighted 4 working electrodes A, B, C and D, respectively, in the MEA head, the reference electrode and contact pads in the rear.

Fig. S2. Characterization of the MEA impedance. (a) The flexible MEA membrane was placed on the abdomen of the zebrafish. (b) Equivalent circuit model consisted of 1) the front-end planar metal electrodes in contact with contracting heart (signal source), and 2) the rear-end instrumentation amplifier associated with high input impedance. (c) Characterization setup. (d) Impedance increased in response to a decrease in the diameter of the electrode.

(b) Fig. S3. ECG of fish sham – before injury (a) and (b) at 8 weeks after injury showing ST segment failed to normalize to baseline.