
Supplementary text 1 
Topological stability analysis of gene regulatory networks: 

Definitions: 

A gene regulatory network can be seen as a directed graph composed by a set of vertices V and a set of 
edges E. Each vertex iv V∈  corresponds to a transcription factor. Any edge ije E∈  corresponds to 

an ordered pair of transcription factors ( ),ij i je v v=  so that the transcription factor vi regulates the 

expression of the gene coding the transcription factor vj. The number of transcription factors in the 
network is known as the cardinal of the graph and can be noted as V . 

The time evolution of the number of copies of a particular transcription factor in a cell can be 
described by the following differential equation. 

{ }( )i
i j ji i i

dn
r n e E n

dt
d= ∈ −     (1) 

The previous equation indicates that the rate of transcription (and indirectly its rate of translation) of a 
transcription factor, depends on the number of copies of all the transcription factors that are involved 
in its regulation. If a transcription factor vj is not involved in the regulation of the expression of the 
transcription factor vi, jie E∉  and ri is not a function of nj. The parameter δi is the specific 

degradation rate of the transcription factor vi. 

The system of equations governing the regulatory network can be written using the following vector 
notation: 

( )dn r n n
dt

= −∆


  
     (2) 

The matrix Δ is a diagonal matrix that contains the specific degradation rates δi. 

A fixed point of the regulatory network corresponds to a vector 0n  for which all the time derivatives 
are equal to zero. In the neighborhood of a fixed point the time evolution of the system can be 
described by the following equation: 
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The coefficients λj and the vectors ju  are respectively the eigenvalues and the eigenvectors of the 

differential matrix of the system, which is expressed as follows: 
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The differential matrix of the system is related to the adjacency matrix of the associated graph A in the 
way that if Dij=0, Aij=0.  

We define the support of an eigenvector iu  as the set of transcription factors { }i kS v=  for which

( ) 0iu k ≠


. The symbol ( )iu k
 represents the kth element of iu . 

Determination of the supports of the eigenvectors: 

Remark 1: From linear algebra it is known that the number of eigenvectors is equal to the number of 
variables in the system, which in our case is V . Therefore we can establish a one to one map between 

transcription factors and eigenvectors. 

Remark 2: If there is a path from vi to vj and a path from vj to vk then there is also a path from vi to vk. 

Lemma 1: For any vertex vi we define the set { }i kP v V= ⊂  as the set of vertices for which there 

exists a path from vi to vk. If there is no path from vi to vj then Djk=0 k iv P∀ ∈  

Proof: If 0jkD ≠  there is an edge directed from vk to vj. As k iv P∈  there is a path from vi to vk and as 

it is stated in remark 2 there is also a path from vi to vj, which contradicts the proposition of the lemma. 

 

Remark 3: The set Pi can contain vi or not. If it contains vi, this vertex is located in a circuit and all the 
other vertices in the circuit belong also to Pi. 

Remark 4: The subset of V, { }/i j i j iR v v v P= ≠ ∉  is the complement of { }i i iQ v P= ∪ , c
i iR Q=  

Theorem 1:. For each vertex vi, there are iQ  eigenvectors of D with a support i iS Q⊆ .  

iQ  is the cardinal of the set iQ . 

Proof: An eigenvector of D is defined by the following equation: 

i i iDu uλ= 
      (5) 

Component by component we can write: 

( ) ( )jk i i i
k

D u k u jλ=∑  
     (6) 

If j iv R∈ , and k iv Q∈ , according to lemma 1 Djk=0. Therefore there are solutions of equation (6) for 

which ( ) 0i j iu j v R= ∀ ∈


, which implies that there is at least an eigenvector with a support that does 

not intersect the set Ri, 0i iR S∩ = . If the support Si does not intersect Ri it can be the empty set or it 
can be contained in the complement of Ri, which is Qi. 

Now it is necessary to show that there are solutions with non-zero values in at least one of the other 
components of iu  and therefore its support is not the empty set. The sub-graph that contains only the 



vertices k iv Q∈  is a subsystem with a differential matrix D’ that contains only the rows and columns 

corresponding to the vertices k iv Q∈ . This matrix has as many eigenvectors as the number of nodes, 

k iv Q∈ , each eigenvector contains at least one non-zero element, therefore there are iQ  solutions for 

which / ( ) 0k i iv Q u k∃ ∈ ≠


, which implies that there are also iQ  eigenvectors of D with a support. 

i iS Q⊆  

 

Theorem 2: If i iv P∉  there exists a single eigenvector iu  with a support i iS Q⊆ , that also contains 

vi. i iv S∈ . This eigenvector has an eigenvalue equal to –δi. 

Proof: according to theorem 1 there are iQ  eigenvectors of D with a support. i iS Q⊆ . As i iv P∉  

then 1i iQ P= + . If i iv P∉  there is no path starting in vi that goes back to itself, therefore according 

to lemma 1 Dik=0 k iv P∀ ∈ . If all the components ( ) { }( )0i j i iu j v R v= ∀ ∈ ∪


 then the system is 

reduced to a subsystem composed by the elements of Pi and its differential matrix has iP  rows and 

columns and also iP  eigenvectors. The support of these is eigenvectors is contained in Pi. Ifg  there 

are iP  eigenvectors contained in Pi and 1iP +  eigenvectors with supports contained in Qi, given the 

fact that by deffinition i iP Q⊂ , there must be exactly one single eigenvector with a support i iS Q⊂  

and i iS P⊄ , which implies that i iv S∈  or equivalently ( ) 0iu i ≠


. 

Once we know that this vector exists and that is unique we can determine its associated eigenvalue. 

If i iv P∉  there is no path starting in vi that goes back to itself, therefore according to lemma 1 Dik=0 

k iv P∀ ∈ . If i iS Q⊆ ⇒ ( ) 0i j iu j v R= ∀ ∈


. This means that equation (6) can be simplified to the 

form: ( ) ( )i i i iu i u id λ− =
 

. As ( ) 0iu i ≠


 then i iλ d= − . This proves completely the theorem. 

Remark 5: If k iv P∈  then k iP P⊆ . 

Lemma 2: If vi and vj are in the same cycle, the sets Pi and Pj are identical. 

Proof: If both vertices are in the same cycle, there is a path from vi to vj and also a path from vi to vj, 
therefore j iv P∈  and i jv P∈ . Taking account of remark 5 j iP P⊆  and i jP P⊆ , therefore Pi=Pj. 

Remark 6: Given lemma 2 we can see that the relation “being together in the same cycle” divides the 
set of vertices in equivalence classes. These equivalence classes are subsets of V that we will call 
“cyclic sets” and note as Cr and the intersection between two different cyclic sets is empty rC V⊆ , 

0r sC C r s∩ = ∀ ≠ . The vertices that are not in any cycle can be seen as cyclic sets of only one 
element and they satisfy also the two previously mentioned properties of the cyclic sets. 

Lemma 3: Each vertex in V belongs to one and only one cyclic set. 



Proof: Let’s assume that a vertex vi belongs to two different cyclic sets Cr and Cs. Then there is a path 
from vi to any element of Cr and there is a path from any element of Cs to vi. This means that there is a 
path from any element of Cs to any element of Cr. In an analogous way we can show that there is also 
a path from any element of Cr to any element of Cs, therefore the cyclic sets Cr and Cs are identical, 
which contradicts our initial proposition. 

Remark 7: To each cyclic set Cr we can associate a set Pr, which is identical to i i rP v C∀ ∈ . By 

definition r rC P⊆ . 

Theorem 3: For any cyclic set Cr there are rC  eigenvectors whose supports Si are contained in Pr 

and contain elements of Cr. i rS P⊆ , 0i rS C∩ ≠ . 

Proof: From theorem 1 we know that there are rP  eigenvectors with supports contained in Pr. From 

lemma 3 we know that each element of Pr belongs to one and only one cyclic set. Now we are going to 
proceed by induction. 

Let’s assume that Cr=Pr, in this case theorem 1 states that there are r rP C=  eigenvectors with 

supports contained in Pr and therefore also in Cr. as these supports are contained in Cr they must 
contain elements of Cr therefore theorem 3 is valid for this case. 

Now let’s assume that Pr contains Cr and other cyclic sets Cg that satisfy the condition Cg=Pg 

/g r g rC P C C∀ ⊂ ≠ . For each Cg we have already proven than there are gC  eigenvectors with 

supports contained in Cg. As the intersection between different cyclic sets is empty the intersection 

between the support of these eigenvectors and Cr is empty. This means that the gC  eigenvectors with 

supports contained in Cg have supports contained in Pr and do not intersect Cr. There are in total 

g
g

C∑  eigenvectors with these characteristics. As we know that there are rP  eigenvectors with 

supports contained in Pr there must be r g r
g

P C C− =∑  eigenvectors contained in Pr that have a 

non-empty intersection with Cr. This proves theorem 3 for this case. 

The theorem can be proven for any case. by repeating the same reasoning. 

Conclusions: 

By computing the sets Pi corresponding to each vertex in the regulatory network we can obtain sets 
that contain the support of each eigenvector of the differential matrix i iS Q⊆ . For some very 
particular values of the partial derivatives contained in the differential matrix, there might be some 
cases in which some of the vertices in Qi contain zero values ( i iS Q⊂ ) but in general it can be 
assumed that Si=Qi. 

If a vertex is not contained in a cycle (there is no pathway coming back to itself) there is an 
eigenvector with support i iS Q⊆  (very likely Si=Qi) which has a negative eigenvalue and corresponds 
to a stable mode of the system. If there are no cycles in the network all the eigenvalues are negative 
and all the steady states are stable. 



If there are cycles in the network, for each cyclic set Cr there are rC  eigenvectors with supports that 

contain elements of Cr (except for some very particular values of the elements of the differential 
matrix they will contain all the elements of Cr). The eigenvalues associated to these vectors can have 
positive and negative real parts and also imaginary components (depending on the values of the 
elements of the differential matrix). This means that these eigenvectors involving the vertices in Cr can 
become unstable due to changes in the parameters of the system and give rise to reordering 
phenomena in which due to some slight changes in parameters (mutations or environmental changes), 
the regulatory network can move from a fixed point to that becomes unstable to a completely different 
one. These reordering phenomena (known as catastrophes in catastrophe theory) will be typically 
associated to strong changes in the expression level of the transcription factors belonging to the set Pr. 
That’s why using the sets Pr for gene-set expression analysis might be a good alternative to using gene 
ontologies etc. This is because using these sets might give us better insights into the nature of the 
possible reordering phenomena. 
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Figure S1. The figure illustrates how the presence of a regulatory loop induces a qualitative different 
behavior characterized by two alternative steady states, one of which becomes unstable when the 
parameter x1

* falls below a certain threshold. This would cause the system to transit from the lower 
steady state to the upper one giving rise to a rearrangement similar to a non-equilibrium phase 
transition. The system will remain in the upper steady state even if the parameter that caused the 
transition comes back to the original value, giving rise to a hysteresis cycle. These irreversible 



transitions are characteristic of living systems. Some examples are the transitions between different 
phases of the cell cycle, the commitment of a cell to apoptosis or the differentiation of stem cells.  

Example of topological stability: 

We consider a system of three transcription factors. Two of them activate the expression of each other 
and the third one represses the expression of one of them. Let’s consider that the activity of the 
repressor x1 is governed by some external input and can be seen as a variable parameter of the system. 

The associated system of differential equation takes the form: 

max 32
2 2 2

3 3 1 I

xdx k x
dt x K x K

d= −
+ +

    [1] 

max3 2
3 3 3

2 2

dx x
k x

dt x K
d= −

+
     [2] 

The two eigenvalues of this system can be calculated using the following equation: 

( ) ( ) ( )( )2 3 2 3 2 3 2 3 3 2

2
x x x xd d d d d d

λ
− + ± + − + ∂ ∂ ∂ ∂

=   [3] 

Both eigenvalues will be negative and the system will be stable if: 

( )( )2 3 2 3 3 2x x x xd d > ∂ ∂ ∂ ∂      [4] 

In our case this condition is equivalent to: 
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2 3
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1 1x x x

κ κ
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+ + +
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We have written the previous equation using the following adimensional quantities: 
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On the other hand the system has two possible steady states. The first one corresponds to x2
*=0 and 

x3
*=0 and the second one to: 
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If we give to κ3
* and κ2

* values of 2, the first solution is stable for values of x1
* higher than 1. The 

second steady state is always stable because equation [5] takes a constant value of 0.25. 

If the system is in the first steady state and as a result of an environmental stimulus x1
* drops below the 

critical value of 1, the system will reorganize itself by moving to the second steady state and it remains 
there even if x1

* recovers its previous value. Similar sudden and irreversible rearrangements are 
observed in the progress of eukaryotic cells through the cell cycle or in cell differentiation. 

If the third transcription factor does not regulate the second one, the system would only have a single 
steady state for any parameterization and x1

* and x3
* are related by a continuous function. 

In this case the only steady state is stable and defined by the following equations: 

*
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      [13] 
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These characteristics are a result of the system’s topology and are independent of the particular 
parameterization. 

  



 

Figure S2 - Degree distribution plots on log-log scale for different networks. The red line and 

the formula represent the fitted power law distribution and the R2-value represents how good 

the fit is.   
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Figure S3 - TFs with up- or down-regulated target genes as a function of the environment. 

Red color represents that most of the target genes are up-regulated in one condition compared 

to the other, and green means down-regulation of a majority of the target genes. 
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