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Simulation of natural perturbation

To characterize the robustness of each model in silico, we performed 10,000 Monte Carlo 

simulations where the expression level of each enzyme, which is reflected in Vmax, was subject to 

a random change. Starting from the default steady state, each perturbed model was simulated for 

sufficiently long to determine if a steady state (which need not be the default steady state) was 

reached (Supplementary Figure 1A). For a given model, we calculated the in silico probability of 

steady-state retention as the fraction of 10,000 simulations that reached a steady state. For 

simplicity, we investigated only perturbations in Vmax and did not involve other kinetic 

parameters such as KM, which could be similarly investigated.
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Supplementary Figure 1. Existing models have robustness problems to different extent. The 

empirical probability of robustness, calculated as the fraction of 10,000 randomly perturbed models that 

retain a steady state, is shown for each of the 13 BioModels database models 1-13. SD, the standard 

deviation of log fold change. CarbMetab, carbohydrate metabolism; RBCMetab, red blood cell 

metabolism; AspMetab, aspartate metabolism; FolateCyc, folate cycle; CalvinCyc, calvin cycle.



Each Vmax was subjected to F-fold changes, where F = Vmax,new/Vmax,default, and  log(F) was 

sampled from a normal distribution with mean = 0 and standard deviation= 0.5 (Fig. 1B). 

Apparently, models’ robustness varied widely.  Some models, such as the folate cycle model10, 

are very robust and almost always retain a steady state after perturbation. Others, such as 

Glycolysis-112, Glycolysis-311, and Glycolysis-44 responded poorly even to moderate 

perturbations, as only <60% of the models reach any steady state after perturbation. Interestingly, 

the difference in robustness can be dramatic even between models of the same metabolic 

pathway (cf. Glycolysis-112 and Glycolysis-26 yeast glycolysis models). This result suggests that 

not all descriptions of a native metabolic system perform equally well when subjected to 

perturbation. If one accepts the notion that these native pathways are robust against 

perturbations, the models did not describe such behavior.

One limitation of the Monte Carlo simulation is its scalability. The numerical integration of 

ODEs, while accurate, is computationally expensive and not scalable. Such scalability issues are 

most critical if the robustness calculation is to be coupled to highly iterative algorithms such as 

the ones used for model building and parameter fitting. For example, if we wish to re-fit the 

parameters of the non-robust models (e.g. Teusink et al.'s glycolysis model) so that the revised 

models could have higher bifurcational robustness, it is imperative that the quantification of 

robustness is accomplished in a more efficient and scalable way.

Optimized parameter values are biologically meaningful

Figure 4B shows a comparison between the parameter set returned by an optimization 

considering robustness and the original parameter set used by Teusink et al.12. In the optimal set 

only four parameters (Kglyco, Ktreha, , and KATP) required significant modifications; most 𝑉 𝑚
𝑝𝑑𝑐

parameters had little to no effect on the robustness and thus remained unchanged. Interestingly, 

the significant parameter modifications correspond with the adjustments made by van Heerden et 

al.14 in their updated version of Teusink et al.’s model12. For example, both teams identified the 

need for adjustment in glycogen and trehalose production, the increase in pyruvate 

decarboxylase activity, and the consideration of phosphate dynamics as important features for 



robustness. Overall, we demonstrate that a parameter optimization considering S can 

significantly improve the robustness of a metabolic model without any alteration to the kinetic 

rate expressions.
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Supplementary Table 1. Abbreviations used in Figure 1C and Figure 4B

Abbreviation Enzyme Name/Function
Glk  Gluco kinase
Pgi  Phosphogluco isomerase

Glyc  Glycogen production
Treha  Trehalose production

Pfk  Phosphofructokinase
Aldo  Fructose-1,6-bisphosphate aldolase

Gapdh D-glyceraldehyde-3-phosphate dehydrogenase
Pgk  Phosphoglycerate kinase

Pgm  Phophoglycerate mutase
Eno  Phosphopyruvate hydratase
Pyk  Pyruvate kinase
Pdc  Pyruvate decarboxylase

Succ  Succinate production
Glt  Glucose transport

Adh  Alcohol dehydrogenase
G3pdh Glycerol 3-phosphate dehydrogenase

ATPase Adenosine triphosphatase

Supplementary Table 2. Abbreviations used in Figure 4B

Abbreviation Metabolite Name
NADH Reduced nicotinamide adenine dinucleotide

P High energy phosphate pool (2[ATP] + [ADP])
ACE Acetaldehyde
PYR Pyruvate
PEP Phosphoenolpyruvate
P2G 2-phospho-D-glycerate
P3G 3-phospho-D-glycerate
BPG 1,3-biphospho-D-glycerate

TRIO Dihydroxyacetone phosphate + glyceraldehyde-3-phosphate
F16P Fructose-1-6-biphosphate
F6P Fructose-6-phosphate
G6P Glucose-6-phosphate

GLCi Internal glucose


