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Investigation of the statistical significance of the ILP predic-
tions

Comparison with an independent statistical method.

Here, an independent statistical method is applied to validate the DILD network constructed by
the ILP algorithm. To this end, the GUIDE algorithm is used [1, 2]. GUIDE is an algorithm that
builds a classification and regression tree model to predict the values of one or more response
variables (Y1, Y2, ...) from the values of the predictor variables (X1, X2, ...). It can also produce
an importance score for each Xi. Classification and regression trees were also shown to predict
oral absorption in humans based on predictors of chemical substructures [3].

Here, the drug targets from STITCH were used as predictor variables (Xi) and the differential
gene expressions for each drug were used as response variables (Yi). GUIDE was used to
construct regression trees, modeling how drug targets correlate statistically with the differential
gene expressions. Since GUIDE is agnostic to the protein connectivity in the PKN, it cannot
construct functional mechanistic pathways in similar fashion to the ILP, but can produce scores
for the drug targets that represent their importance in predicting the observed gene expression
signatures. Drug targets with importance score greater than 1.0 are considered significant
and their overlap with the nodes in the DILD network is computed using the hypergeometric
cdf.

Of the 4478 drug targets in total present in the PKN, the GUIDE algorithm identified 78 to be
predictive, with 71 being present in the optimized network. The ILP algorithm conserved in the
solution 1056 drug targets (of the original 4478). Note that not all 1056 drug targets are used
to generate signal, many of them are included as regular signaling nodes. Thus, an enrichment
score can be calculated as follows: number of hits: 71; out of 78 nodes obtained from GUIDE;
number of tries: 1056; total number of targets: 4478. If GUIDE and ILP are orthogonal, the
probability of such a result is the same as the probability (2.0630e-37) of randomly drawing
1056 balls from 4478, of which 78 are black and 4400 are white, and getting 71 or more black
balls. Therefore the p-value is 2.0630e-37. The significant overlap between the ILP and GUIDE
predictions, further establishes the statistical significance of the ILP results.
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Sensitivity analysis with respect to model parameters.

The ILP formulation incorporates two user defined parameters that determine the contribution
of the measurement-prediction mismatch (parameter α) and the solution size (parameter β) in
the objective function. Minimization the measurement-prediction mismatch implies connecting
the drug targets with as many of the over-/under-expressed genes as possible based on the
structure of the PKN. However, this leads to the rapid increase of the solution size, which is
penalized by the β parameter. Thus, the two objectives are conflicting. See also the Methods
section. High values of the α/β ratio imply the algorithm prioritizes the goodness of fit to the
data over the size of the solution. Low values of the α/β ratio prioritize the small size of the
solution over the goodness of fit. To illustrate how the algorithms performance is affected by the
α and β parameters, the pathway construction procedure is repeated for 12 values of the α/β
ratio while monitoring the solution size, the goodness of fit to the data, and model predictions
with respect to the consistently up- and down-regulated signaling proteins. Results are shown
in the Supplementary Figures 1, 2 and 3.

In Supplementary Figure 1A we demonstrate how the average solution size changes for different
values of the α/β ratio and in Supplementary Figure 1B the corresponding trends for the average
fitness error. We tested 12 α/β ratios: 20, 10, 6.67, 5, 4, 3.33, 2.85, 2.5, 2.22, 2, 1.82, and 1.67.
A ratio of e.g. 20 implies that up to 20 nodes may be added in the solution for fitting one
more measured gene. High values offer the advantage of fitting as many of the expressed genes
as possible, but at the cost of including a large number of intermediate nodes, which may lack
biological meaning. For example, if a signaling cascade of 20 nodes/interactions is required to
fit the expression of a single gene, and given the inherent noise of gene expression data, then
there is very little evidence supporting the functionality of this cascade. On the other hand,
low values of the α/β ratio guarantee the functionality of the included cascades, but do not
allow the solution to branch out to a big part of the expressed genes. All the analysis presented
in this paper has been performed with α/β ratio equal to 5. In the Supplementary Figures
1A and 1B note that the long error bars are attributed to the variability of the drug specific
pathways in terms of solution size and differentially expressed genes. Moreover, the residual
error of around 45%, even for very high ratios, is attributed to the fact that the transcription
regulation of many genes is not known (i.e. there are no TFs known to express them), thus the
corresponding genes cannot be incorporated in the solution.

In Supplementary Figures 2 and 3 we show the predicted signaling activity of the consistently
up- and down-regulated nodes of Figures 5,6 across all the selected α/β ratios. We observe
that almost all of the consistently up-/down-regulated nodes demonstrate the same trend for
all ratio values, even though these nodes were computed using α/β = 5, demonstrating the
robustness and statistical significance of model predictions. However, a few nodes that cross
the y = 0 dashed line are observed, such as GSK3B and AKT1 of the up-regulated proteins and
NFE2L2, NR4A1 of the down-regulated proteins. This occurs because as the α/β ratio changes,
genes that were out of reach are now reachable and a node that could be used to connect to
over-expressed genes, it is now used to connect to under-expressed genes, indicating uncertainty
with respect to its signaling activity.
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Figure 1: Dependence of (A) solution size and (B) fitness error from model parameters. Lower
values of the α/β ratio prioritize the solution size over the fitness error, while higher values lead
to better fit to the data but at the cost of increased solution size, compromising the biological
significance of the resulting topology. The bars refer to average values across all drug specific
pathways.
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ILP predictions on randomized data

To further explore the statistical significance of ILP predictions and subsequently, the signifi-
cance of the DILD network and candidate drugs, we randomize the gene expression data, drug
targets and PKN connectivity, repeat the pathway construction procedure, and compare our
findings with the protein activities calculated based on the original PKN and data.

In more detail regarding the randomization of the gene expression data, we replaced the over-
and under-expressed genes upon perturbation with the toxic compounds (as extracted from
the cMAP), with arbitrary genes of the same number. The ILP was then implemented on the
randomized dataset, constructing compound specific signaling pathways originating at the drug
targets and terminating at the selected genes. The predicted protein activities were extracted
and averaged across all drugs to identify peristent trends in similar fashion to what was per-
formed with the original data and described in section 2.3. Results are shown in Supplementary
Figure 4B. In addition to randomizing the gene expression data, the drug targets were also ran-
domized. Drug targets, as obtained from the STITCH database, were replaced with arbitrary
proteins of the same number and the pathway construction procedure was repeated. Results are
shown in Supplementary Figure 4C. Finally, in Supplementary Figure 4D the gene expression
data and drug targets were randomized simultaneously.

The effect of the PKN connectivity on model predictions was also interrogated. More specifi-
cally, the Switching Algorithm (as it is implemented in the BiRewire R package) [4] was applied
for randomizing the network structure while conserving the node degrees, and then the path-
way construction procedure was repeated to predict protein activities and investigate how these
change depend on the network structure. The PKN was first converted into an unsigned net-
work and then the Switching algorithm was applied, performing a total of 35,879,700 pairwise
switching steps (by sampling a randomised version of the PKN every 358,797 switching steps,
which corresponds to the empirical lower bound proposed in [4]). A total number 100 random
networks were build in this way. Subsequently, in each of these random networks, 2% of the
interactions (randomly selected) were labeled negative in accordance to the original PKN, and
50% of the interactions (randomly selected) changed directionality. The ILP was implemented
to calculate compound specific signaling pathways for each of the 100 random PKNs. The
predicted protein activities were averaged across all solutions and plotted in the Supplemen-
tary Figure 4E. Finally, the gene expression data, drug targets and PKN connectivity were all
randomized simultaneously and results were plotted in Supplementary Figure 4F.

Overall, in all randomization setups we observe that the predicted protein activities are signif-
icantly different than the ones obtained from the original data. However, there are peristent
trends present in the different setups. More specifically, we observe that in Supplementary
Figure 4B and 4C, the proteins on the left end of the x-axis tend to be up-regulated and the
proteins on the right tend to be down-regulated, in similar fashion to the protein activities of
Supplementary Figure 4A. This is expected since protein activities are determined by a combi-
nation of factors, and randomizing either the gene expression data or drug targets alone is not
enough to completely randomize the ILP results. For example, many of the consistently up-
and down- regulated proteins are transcription factors connected to the differentially expressed
genes. Thus, even if drug targets are randomized (4C), the signal has to, eventually, go through
the transcription level to reach the differentially expressed genes, despite the fact it originated
at different drug targets. In similar fashion, many the consistently up- and down-regulated
proteins are drug targets. Thus, even if the gene expression data are randomized (4B), the
signal has to originate at the same drug targets, despite the fact it terminates at different
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genes. On the other hand, if gene expression data and drug targets are randomized simultane-
ously (4D), the ILP results seem completely random. Similar observations can be made for the
Supplementary Figure 4E. Randomizing the structure of the PKN significantly affects the ILP
predictions, apart from a clear trend on the far left of the figure, where proteins are consistently
up-regulated. This is attributed to the fact that many of these proteins are drug targets and
signal transduction has to originate there (by design) regardless of the the network structure
or gene expression data. Finally, all trends seem to have disappeared upon randomization of
gene expression data, drug targets and PKN connectivity simultaneously (4F). The above make
clear that the construction of compound specific signaling pathways leverages equally the gene
expression data, prior knowledge of drug targets, and network connectivity and the contribution
of every one of these factors can be isolated and quantified.

To quantify the randomization of protein activities (model predictions) upon randomization of
the input data, we calculate how many of the 640 nodes that are predicted to be up-regulated in
the final solution are also up-regulated after the randomization of the input data. And also how
many of the 397 nodes that are down-regulated in the final solution are also down-regulated
after the randomization of the input data.

With regards to Supplementary Figure 4B, 596 nodes are up-regulated in total, 457 of them
are overlapping with the final solution. The statistical significance of the overlap is calculated
using the hypergeometric cdf: 457 hits, out of 596 nodes predicted to be up-regulated with
the randomized data, 640 nodes up-regulated in total in the final solution, and total number
of nodes in the pool equal to 1150. This yields p-value=1.7757e-52. With regards to the
down-regulated nodes, the overlap is 204 out of 299 nodes down-regulated in total, yielding p-
value=1.5686e-45. These p-values validate what was previously observed, that nodes at the two
ends of Figure 4B are showing a clear trend to either up- or down-regulation, in the same manner
as with the original data of Figure 4A. And these trends are statistically significant. Similarly,
statistically significant overlap with the original data of Figure 4A is observed for Figure 4C
(p−value = |O|−26) and Figure 4E (p−value = |O|−48). The significance of the overlap is lower
for Figure 4D, where with respect to the up-regulated nodes p-value=0.83 (not significant) and
with respect to the down-regulated nodes p-value=1.02e-05. The overlap is lower for Figure 4F.
With respect to the up-regulated nodes p-value=0.023 (borderline significant) and with respect
to the down-regulated nodes p-value=0.3118 (not-significant). The borderline significant p-
value for Figure 4F is more likely attributed to the node degrees of the PKN. Nodes with higher
degrees are more likely to be used in the solution since they facilitate the connection of drug
targets and gene expressions.
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Figure 4: Average protein activities across all solutions with respect to the (A) Original data
(gene expressions, drug targets, and PKN), (B) Randomized gene expression data, (C) Ran-
domized drug targets, (D) Randomized gene expression data and drug targets, (E) Randomized
PKN connectivity, (F) Randomized gene expression data, drug targets and PKN connectivity.
The x-axis in all subfigures corresponds to individual signaling proteins; the y-axis corresponds
to the number of solutions where the respective node is up- or down-regulated. The order of
the nodes is the same in all subfigures. The nodes on the left end of the x-axis are consistently
up-regulated across all solutions (with the original data) and the nodes on the right end are
consistently down-regulated across all solutions.

9


