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A tutorial review is presented of current methods for the Analytical chemists generally need to recognise sampling as
the first step in the measurement process, and to include itsestimation of measurement uncertainty due to primary

sampling. Current terminology used in the description of contribution in the estimation of uncertainty. This will give
more realistic estimates of the measurement uncertainty thanuncertainty and analytical data quality is reviewed and

explained. One basic method for the estimation of uncertainty consideration of only the lab-based analytical procedures. The
inclusion of the sampling step becomes particularly importantin sampling is described in detail with a worked example of its

application to a test dataset. This method employs the taking in deciding acceptable levels of uncertainty arising from chemi-
cal analysis. If the uncertainty from sampling is very large forof a proportion of samples in duplicate, with the further

duplication of chemical analysis on these samples. Robust example, then there comes a point where reduction in uncer-
tainty from chemical analysis makes a negligible impact andanalysis of variance (ANOVA) is applied to estimate the total

measurement uncertainty and also to quantify the is therefore not cost-effective. Only when analysts know the
contribution of uncertainty from sampling can they decidecontributions to that uncertainty which arise from the

processes of primary sampling and chemical analysis. The what is a reasonable contribution from analysis.
This paper explains the terminology relating to bothANOVA program and test data are available electronically to

enable application of the methodology. The assumptions and uncertainty and data quality, and tries to clarify their inter-
relationship and what they both mean for analytical measure-limitations of this basic method are discussed, including its

inability to estimate sampling bias. More sophisticated ments. It also reviews the options for estimating uncertainty
that arise from the process of measurement. The establishedmethods are discussed that include the estimation of the

contributions to uncertainty from systematic errors in both methods for quantifying the analytical component of the
uncertainty will be described briefly to act as a comparisonsampling and analysis. Other approaches to the estimation of

uncertainty from sampling, from both sampling theory and with the more recent methods that are being developed for the
components that arise from the process of primary sampling.geostatistics are compared with these methods. The

comparison is made between sampling and chemical analysis For this purpose sub-sampling of a test material within the
laboratory will be considered as part of the analyticalas the two sources of uncertainty, relative to each other, and

relative to the overall variance of the measurements. Fitness- component.1
The main aim of this paper will be to describe the practicalfor-purpose criteria are given and discussed for the ideal

maximum and minimum values of the proportion of the implementation of the chemometric techniques rather than to
discuss the details of the field studies,2–4 or the implications ofmeasurement variance to the total variance, and the relative

contributions of the sampling and analytical variances. the findings for either the interpretation of results5 or for the
objectives of geo-analytical science,6 that have been discussedKeywords: Measurement uncertainty; sampling; analytical
elsewhere. The assumptions upon which the calculations are

data quality; robust analysis of variance; fitness-for-purpose;
made will be discussed as will the limitations that these impose

sampling bias
on the validity of the results. Alternative approaches to the
estimation of uncertainty and its components will also be

Measurement uncertainty has become an important concept discussed.
in analytical science that unifies many previously disparate The chemometric techniques for the comparison of the
strands of information on data quality. Chemometric tech- components of the uncertainty that arise from both the sam-
niques play a crucial role in estimating values for the overall pling and the chemical analysis are described. These techniques
uncertainty and also in the separation and quantification of can separate the components, indicate whether the combined
the various components of uncertainty. These components uncertainty is excessive, and also indicate which of the compo-
include not just those arising from the chemical analysis, but nents is most dominant and may need improvement. This later
also those arising from the sampling procedure that is used to objective involves an assessment using ‘fitness-for-purpose’
select the primary sample from the sampling target. Such criteria.
sampling targets could be for example, a stockpile of process
material, a site of contaminated land or a batch of foodstuff.

TERMINOLOGY OF UNCERTAINTY AND DATA
In the case of environmental and geochemical investigations,

QUALITY
primary sampling is often the main source of uncertainty and
dominates analytical sources such as instrumental determi- Measurement uncertainty has been defined informally7 as ‘the

interval around the result of a measurement that contains thenation or the sub-sampling of test materials within the
laboratory. true value with high probability’. This is somewhat more
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comprehensible than the formal definition of ‘uncertainty of or a random error in the method. The ISO definition of
accuracy is ‘the closeness of the agreement between a testmeasurement’ given by the International Organisation for

Standardisation (ISO) as: ‘A parameter associated with the result and the accepted reference value.’ 9 This is the term used
to express this error of a single measurement, which cannotresult of a measurement, that characterises the dispersion of

the values that could reasonably be attributed to the necessarily be identified as being of a systematic or a random
nature. ‘Accuracy’ and ‘error’ have very similar meanings, butmeasurand.’ 8 This definition utilizes the relatively new and

often misunderstood term of measurand. This term can be ‘accuracy’ is a lack of ‘error’ for single measurements. This is
equivalent to ‘trueness’ being a lack of ‘bias’ for methods, ordefined formally as the ‘particular quantity subject to

measurement’. 9 For analytical chemistry, it can be defined their results.
When any further measurements are added to the first, itinformally as the true value of the analyte concentration in a

specified segment of the material, and is not a synonym for becomes possible to estimate the systematic component (i.e.,
bias) from the random component of the error in the method‘analyte’. The ‘true value’ is always unknown, but when esti-

mated as the ‘accepted reference value’ it acts as a reference (i.e., precision). It is possible that the error in the first measure-
ment is almost entirely random [e.g., Fig. 1(b)] or equallypoint for the estimation of uncertainty, error, accuracy and

bias. There is some confusion over the use of terms such as possible that it is almost entirely systematic [e.g., Fig. 1(c)].
In the former case [Fig. 1(b)] all four measurements are‘conventional true value’ and ‘reference value’ in the literature.

The uncertainty of a measurement is quite different from made with a method that is not very precise, but the average
value of which is close to the ‘true’ value (i.e., the bias of thethe error. Error is ‘the result of a measurement minus the true

value of the measurand’ 9 and thus contains both a random method is small ). In the latter case [Fig. 1(c)], although the
method is quite precise, the average value is a large distanceand a systematic component. Bias is ‘the difference between

the expectation of the test result and an accepted reference from the ‘true value’ (i.e., the bias of the method is large). The
ideal case is where the bias of the method is small, the precisionvalue’. 10 In practice this expectation is estimated as the mean

of a large number of measurements and is essentially system- is good (i.e., a small value) and all measurements therefore
have a small error [Fig. 1(d)]. In the case where the precisionatic. Trueness is a lack of bias, and is formally ‘the closeness

of the agreement between the average value obtained from a of the method is poor (i.e., a large value) and the bias is also
large, then the individual measurements can have either largelarge series of test results and an accepted reference value’.10

Precision is ‘the closeness of agreement between independent or small errors [Fig. 1(e)]. Such differences between the errors
of individual measurements made by one method is to betest results obtained under prescribed conditions’, 11 and

describes random error. Examples of such conditions are expected for any method whatever the precision and bias.
Estimation of the uncertainty of the measurements in each‘repeatability’ and ‘reproducibility’. The terms ‘bias’ and ‘pre-

cision’ can be used therefore to describe the quality of methods of these cases (Fig. 1) illustrates the various components of
uncertainty and the difference between the terms uncertaintyof measurement, whereas the terms ‘uncertainty’ and ‘error’

refer to individual measurements. A clearer understanding of and error. Where the method has a large precision value
[Fig. 1(b)] the uncertainty of the measurements is dominatedthese terms and their relationship with uncertainty may be

gained from a graphical representation, either in one or two by this component and is also a large value. Where the
precision and the bias of the method are both small valuesdimensions (Fig. 1).

From a single measurement it is impossible to estimate the [Fig. 1(d)] the uncertainty is also small. Where both the
precision and the bias of the method have large valuesbias or precision of a method [Fig. 1(a)]. The difference

between the measured value and the ‘true’ value of the concen- [Fig. 1(e)] the uncertainty has a large value, based on a
combination of both components.tration is called the ‘error’. From a single measurement how-

ever, it is not clear whether this error is caused by a systematic A more contentious case is where the precision of the method

Fig. 1 Diagrammatic explanation of the difference between the terms bias, precision, error and uncertainty. (a) From a single measurement ( )
of analyte concentration it is impossible to estimate the bias or precision of a method of measurement, however the error of that single
measurement is simply its difference from the true value of the analyte concentration ($). (e) If the method of measurement has a large value of
bias and precision, it is still possible to have a single measurement with a small error ( ), but it will have a large value of uncertainty. See text
for further discussion.
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is a small value, but the bias is large [Fig. 1(c)]. In this case Estimating uncertainty in sampling
the range containing the true value (i.e., the uncertainty) is

For the analysis of many primary materials, the main problem
large. In the ISO definition of uncertainty, it is assumed that

with estimating measurement uncertainty by the methods
all systematic errors have been corrected.8 If the bias of the described above is that they ignore the uncertainty arising
method were known with specified uncertainty for the samples from primary sampling. The term ‘primary sampling’ is used
analysed, then the measurements could be corrected. In this to differentiate it from the sub-sampling of test materials that
case the uncertainty would be small, but larger than for the happens within the laboratory, which can easily be estimated
uncorrected measurements by the amount caused by the as part of analytical precision.1 It is often quoted that an
uncertainty in the correction. The problem with this approach analysis can never be of better quality than the sample upon
when applied to chemical analysis is that systematic errors in which it is made. What has been lacking however is the means
a method are not always known and cannot therefore always of estimating the size of the uncertainty which is introduced
be corrected. Sometimes such errors are suspected but their by sampling. Methods devised originally for estimating analyt-
exact size is unknown, perhaps because the reference materials ical uncertainty have been adapted however, to the estimation
used to estimate them are not well matched to the composition of sampling uncertainty.5
of the samples. In such cases the systematic component of the A more holistic approach is to consider primary sampling
uncertainty must be incorporated in order to give a realistic and chemical analysis as just two parts of the same ‘measure-

ment’ process, and to quantify their combined contribution toestimate of the uncertainty. When inter-organisational trials
the uncertainty. The overall measurement uncertainty canare used to estimate the uncertainty by a ‘top-down’ method
therefore be considered to have contributions from four compo-(see below) the uncorrected analytical bias of each participant
nents. These are the random and systematic errors arisingautomatically becomes incorporated in the estimated
from the procedures of both primary sampling and chemicaluncertainty.
analysis. In terms of the quality of the methods employed,
these four components can be quantified as sampling precision,
analytical precision, sampling bias and analytical bias.

Taking the ‘bottom up’ approach to estimating the total
TECHNIQUES FOR ESTIMATING measurement uncertainty we can review the methods available
MEASUREMENT UNCERTAINTY for the estimation of these four components. Analytical pre-

cision can be measured by the use of analytical duplicates13 orFor chemical analysis, two main strategies have been proposed
in combination with sampling precision using a balancedfor the estimation of measurement uncertainty. They both need
design of sampling and analytical duplicates.14,15 A balancedto be evaluated as options for the application to primary
design is achieved when there are equal numbers of analyticalsampling. In the ‘bottom up’ approach the random error from
replicates on each of the sampling replicates, as is the case ineach individual component of a method is quantified separately
the test data discussed below. Analytical bias is usually esti-as a standard deviation (s). The overall uncertainty is then
mated by the analysis of certified reference materials.16 New

estimated by summing the individual errors by their variances
methods have been proposed for the estimation of sampling

(s2 ).8,12 The alternative ‘top down’ approach uses inter-
bias. For a single sampler it is possible to measure the bias

laboratory trials (such as proficiency tests or collaborative
between the measurements by different protocols.2 Bias against

trials) to estimate the total uncertainty of a measurement. In
an ‘accepted reference value’ as specified by ISO, could be

this method, many selected laboratories (n>8) analyse the achieved in theory by the use of a reference sampling target.
same sample, by the same analytical method.1 The scatter of This is the sampling equivalent of a reference material for the
the measurements reported by all of the laboratories is then estimation of analytical bias.17 Such a target has not yet been
used to derive an overall estimate of uncertainty. The ‘bottom created, but in principle it would be given a certified value and
up’ approach has the limitation that it requires that all of the uncertainty of some parameter (such as the mean concentration
sources of uncertainty need to be identified. It is relatively easy of an element) by a certification trial, analogous to the
to consider the obvious sources of error which are explicit procedure currently used to certify a reference material.
parts of the method (e.g., weighing, volumetric additions). Taking the ‘top down’ approach it is possible to use measure-
However, the most important source of uncertainty may not ments from inter-organisational sampling trials, such as sam-
be explicit in the method (e.g., laboratory temperature) and it pling proficiency tests4 and collaborative trials,3 to estimate
is therefore easily overlooked especially by inexperienced prac- uncertainty5 which can incorporate the uncorrected bias in the

measurements from any of the participants.titioners. Furthermore, it can be a long and expensive pro-
Four methods for the estimation of measurement uncertaintycedure to quantify all the component errors if the method is

from primary sampling have recently been proposed and tested.5to be applied rigorously. Once the main component of the
They correspond to the four possible combinations of numbersuncertainty has been identified however, then the variance of
of samplers (i.e., people taking samples) and numbers of samplingthis component often dominates to such an extent that future
protocols employed, which are:- Method 1, for single sampler/monitoring can concentrate on this one source of variance.
single protocol; Method 2, for single sampler/multiple protocols;The benefits of the ‘top down’ approach can be appreciated
Method 3, for multiple sampler/single protocol; and Method 4,from the discrepancies that are often evident between labora-
for multiple sampler/multiple protocols.tories in inter-organisational trials. These differences are often

Only the first of these techniques will be discussed in detaillarger than can be accounted for by the individual estimates
here with an explanation of how to implement the methodof uncertainty within each lab. This is because the ‘bottom up’
and how the chemometric technique of analysis of variance

approach used by individual labs tends to give an under-
(ANOVA) is used to estimate the uncertainty and its compo-

estimate of the uncertainty. The limitation of the ‘top down’
nents. Application of the other three techniques is discussed

approach is that it depends on the selection of laboratories
elsewhere.5

that contribute. If the laboratories all use a similar source of
calibration, they may all be equally biased and therefore give

Example of estimation of uncertainty due to sampling andan underestimate of the uncertainty. Alternatively, one labora-
analysis

tory may have gross errors, atypical of the application of the
method as a whole, and these will cause an overestimate of The most straightforward method for the estimation of uncer-

tainty due to sampling is applicable to the case of a singlethe uncertainty.
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sampler applying a single sampling protocol. It gives an
Table 1 Format of the analytical measurements of test dataset

estimate of the random components of the procedures (i.e.,
MUTEST.DAT for estimation of measurement uncertainty using

sampling and analytical precision) but requires separate esti- analysis of variance (ANOVA)*
mates of the systematic component (sampling and analytical

S1A1† S1A2† S2A1† S2A2†bias).
This method is based on the taking of duplicate samples for 155.6 156.0 173.2 170.0

201.2 184.8 163.2 161.2some proportion of the sample increments (e.g., 10%).
139.2 142.0 229.2 222.0Duplicate chemical analyses are then made on both of these
389.0 408.0 754.0 812.0sample duplicates, in a balanced design (Fig. 2). This exper-
187.0 191.0 124.0 121.0

imental design was originally suggested for the estimation of
314.4 316.8 231.2 226.4

sampling and analytical precision by Miesch18 and then again 462.0 528.0 848.4 859.2
by Garrett.14 The most important aspect is the selection of 286.8 288.0 492.4 490.4

176.4 184.8 232.0 238.0how the duplicate samples are taken. They are not taken at
157.2 151.6 121.2 120.4exactly the same place, but separated by a distance that reflects
264.0 277.6 266.0 264.8the separation that might have occurred by a totally indepen-
447.2 450.0 374.0 371.2

dent interpretation of the sampling protocol. In the investi-
372.8 373.6 392.4 379.6

gation of contaminated land, for example, application of a 113.6 116.4 85.2 83.2
rapid survey technique may place a duplicate sample two 586.4 583.2 528.4 418.8

209.6 178.8 137.2 145.2metres away from an original sample.2 For sampling targets
271.2 256.0 284.4 299.6with rapid temporal variability (e.g., river water) the sampling
113.2 114.8 127.2 120.4duplicates will need to also be separated in the time of their
* Four measurements of Pb (in mg g−1) in soil at 18 sites, withcollection. The period of separation should reflect the

duplicate chemical analysis (of A1, A2) of two field samples (S1, S2),uncertainty in the time of collection that could arise when
corresponding to the experimental design in Fig. 2. † Headings (e.g.

independent samplers use the same specified sampling protocol.
S1A1, S2A1) are for information only and should not appear in data

The three components of the variability can be separated file for computation. Visual inspection of the variation shows that the
using classical analysis of variance (ANOVA) which is available analytical precision is good and although there are differences of a

factor of 2 between the field duplicates, these are much smaller thanin most statistical software packages. Classical ANOVA is
the variability between sites, which ranges over a factor of ten.based on three assumptions (discussed below) and is strongly

affected by a few outlying values. These problems can be
largely overcome by the use of robust analysis of variance,15,19
but this is not usually available within statistical packages. purpose. The analytical duplicate measurements (e.g., S1A1,

S1A2) generally show good agreement with differences ofRobust ANOVA can be implemented using a specifically
written computer program called ROBCOOP4.EXE, that has around 10% relative to the mean value. The agreement between

the duplicate samples at the same location (e.g., average S1been adapted from a published program.20 This program has
been validated on simulated test data of known nominal against average S2 for one site) varies by up to a factor of

about ×2 (±50 to 100%). This variation, whilst substantial,variance and proportion of added outliers.15 This program
and the test data used below (MUTEST.DAT) are available is much less than the variation between the locations, which

varies by a factor of approximately ×10.from the JAAS web site via:- http://www.rsc.org/jaas.
In order to use this program, the four measurements made The program ROBCOOP4.EXE is a compiled FORTRAN

program which can be run in MS-DOS, without a compiler,on the two duplicate analyses (A1 and A2) of the duplicate
samples (S1 and S2) must be arranged in the format shown by following the input requirements shown below (in bold).

This input assumes that the program is in current drive andfor the test data in Table 1. The headings such as ‘S1A1’ (i.e.,
sample 1, analysis 1) and ‘S2A1’ (i.e., sample 2, analysis 1) are directory, and that the data is, for example on drive ‘a:’.
included for information only and should not appear in the

ROBCOOP4
data file for computation. The measured concentration values

Enter file name of raw data a5MUTEST.DAT
can be entered into the columns of a spreadsheet program and

#elements 1
can then be exported and stored as an ASCII or TEXT data

#sites, #replicate samples per site, #replicate analyses per
file, an example of which can be seen in the file MUTEST.DAT.

sample 18,2,2
A good general principle when applying any chemometric

---- element 1
technique is that the analyst should have an intuitive appreci-
ation of whether the result of a computation is reasonable. It The structure of the test data file (18,2,2) corresponds to that

shown in Table 1. The results of the ANOVA calculations areis advisable therefore to visually inspect the raw measurements
to predict a reasonable outcome for the ANOVA analysis. written in a file RESULTS.LIS that is created by the program

ROBCOOP4.EXE. This file can be viewed using a word-Each line in Table 1 shows the four measurements of Pb
(in mg g−1 ) in soil at one of the 18 locations sampled for this processing program. It is overwritten every time the ANOVA

program is run so it should be renamed and saved after each
run if required.

The output of ROBCOOP4.EXE when applied to the test
data in Table 1 (i.e., MUTEST.DAT) is shown in Fig. 3. The
last five lines of the output file show the results of the robust
ANOVA. The ‘mean’ value is the robust mean, in the units of
concentration used in the input data (in this case mg g−1 ). The
‘Sigma values’ are the estimates of standard deviation for the
three different sources of variance, again in the same units of
concentration. The last line ‘sigma (total )’ is the total of all
these three sources, summed by their variance using eqn. (1),
given below. The ‘Percent variance’ line expresses each of the
three variances as a percentage of the total variance. The upperFig. 2 Balanced experimental design for the estimation of random

components of measurement uncertainty by Method 1. part of the output gives the same items of information but
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Fig. 3 Output of the program ROBCOOP4.EXE when applied to the test data in Table 1 (i.e. MUTEST.DAT). The upper five lines give the
results of the classical ANOVA and the lower five lines the results of the robust ANOVA. For discussion see text.

calculated using classical ANOVA, for the purpose of compari- that is approached at high concentration (e.g., 0.05 for 5%
precision, expressed for one standard deviation). If the analyteson. The classical variance estimates are generally higher than

the robust estimates. This is because of a small number of concentration is close to the detection limit of the analytical
method, it should be possible to include this function for theoutlying measurements, for example the duplicate analyses

(528.4 and 418.8 mg g−1 ) of the second sample taken at the standard deviation from analysis as sanal,c in eqn. (2) for the
estimation of uncertainty.15th location in Table 1.

Two of the component variances can be classed as measure- The calculated value of the uncertainty applies to measure-
ments made on single samples taken in the survey. If n multiplement uncertainty, and these are the sampling and the analytical

variance (s2samp and s2anal ). The third component is the between- samples are taken at any individual location within the site,
the uncertainty on the average for that location is the valuelocation variance due to real variation of the analyte across

the target. This is called the geochemical variance (s2geochem ) in given by eqn. (3) divided by √n. This is equal to the standard
error on the mean value (s/√n). For example the estimatedthis particular case of a geochemical investigation. In this

example the sampling uncertainty or within-location variance relative uncertainty at a location where four measurements
have been made would be half (1/√4) of the value given bywill be partially due to small scale geochemical variation

within the location, but represents the uncertainty in all of the eqn. (3) (20.93% for the test data).
samples that could be taken from that ‘location’ as specified
(in this case within a two metre radius).

Relative contributions of sampling and analysis to uncertainty
All three variances can be summed to give the total variance

of the survey. This is the figure that would be calculated when It is clear from eqn. (2) that random errors from both the
processes of primary sampling (s2samp ) and chemical analysiscalculating the standard deviation of all the measurements,

and can be expressed by:- (s2anal ) contribute to the overall measurement uncertainty. This
basic method should give a realistic estimate of the uncertainty,

s2total=s2geochem+s2samp+s2anal (1)
but the use of ANOVA also allows the individual contributions
to the uncertainty to be separated and quantified. AlthoughThe measurement uncertainty (u) can be estimated using this

‘bottom up’ approach, from the combination of the sampling the absolute size of these components can be useful, it is their
size relative to each other and relative to the total variance,and analytical variance, giving the measurement variance as:-
that can be most useful in deciding the suitability of the

u=smeas=√(s2samp+s2anal ) (2)
methods of sampling and analysis employed. This can best be
appreciated when the component variances are expressed asIt is usual to increase the confidence interval of the uncertainty

by multiplying by a coverage factor (k) to give the expanded percentages of the total variance. For the results of the robust
ANOVA on the test data (Fig. 3) the ‘percent variance’ figuresuncertainty (U ).8 The is analogous to the quotation of precision

using two standard deviations (i.e., k=2) for 95% confidence show that the analytical variance contributes a very small
fraction of the total variance (0.16%). This is well below the(95.44% to be exact). This gives:-
suggested maximum percentage for the ideal method in which

U=ku=2smeas the analytical variance should not exceed 4% of the total
variance.15 The proportions and the relationship to the idealAs relative uncertainty (i.e., expanded uncertainty expressed

relative to the concentration) this becomes:- values can be communicated more clearly by displaying them
as a pie chart (Fig. 4).

U%=200smeas/x: (3)
Alternatively the analytical variance should ideally contrib-

ute less than 20% to the measurement variance, if the measure-For the results on the test data, the uncertainty estimate is
57.36 mg g−1 , using eqn. (2). The expanded uncertainty with a ment uncertainty is not to be limited by the analytical

component. For the test data this percentage is 1.3%coverage factor of 2 is twice this value, and the relative
uncertainty is 41.87%, using eqn. (3). This equation assumes [0.16/(11.91+0.16)], which is well within this ideal value.

The measurement variance should ideally contribute lessthat the uncertainty (and hence sanal ) is a fixed proportion of
the concentration. This is a reasonable assumption when the than 20% to the total variance,15 if the measurements are to

give a clear representation of the true variation of the analyteanalyte concentration is well above the detection limit of the
analytical method. The standard deviation of the analysis across the sampling target (in this case the true geochemical

variation). For the test data the measurement variance contrib-(sanal,c) at some concentration (c) has been shown to vary as a
function of concentration,13 by the equation:- utes 12.07% (i.e., 11.91+0.16) to the total variance, which is

well within this ideal value. If the 20% figure were to be
sanal,c=sanal,0+hc

exceeded it does not mean that the measurements are
un-usable, but rather that particular emphasis must be placedwhere sanal,0 is the standard deviation of the analysis at zero

concentration. The constant h is related to the relative precision on consideration of the measurement uncertainty in the
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analysis was balanced so that it reflected their respective
contribution to the uncertainty. The combined expenditure of
the sampling and analysis were also balanced against the
financial losses that could arise from excessive uncertainty in
the measurement.

LIMITATIONS OF THIS METHOD

The assumptions of classical ANOVA have been summarised15
as:- 1 That the variances should be independent. An example
of this assumption being invalid would be if the presence of a
particular mineral in one soil type caused both high sampling
variance due to heterogeneity and also high analytical variance
due to instrumental effects. 2 Each level of variance should be
homogeneous, that is it should not vary systematically withinFig. 4 Diagrammatic representation of the relative contributions of

the variance introduced by the primary sampling and chemical analysis one level. For example, the analytical variance should not vary
to the total variance of the test data set, given numerically in Fig. 3. between different sample types or as a function of concen-
The measurement variance (sampling+analytical ) at 12.07% is well tration. 3 The distribution of errors within each level of
below the suggested ideal maximum of 20% of the total variance,15

variance should be approximately Gaussian.
and can therefore be considered fit-for-purpose. The measurement

The first two assumptions may well be invalid to somevariance and hence uncertainty can be seen to be dominated by the
extent in some instances and should be monitored. The vari-contribution from the sampling (11.91%) rather than from the chemical

analysis (0.16%). ance of the analyte concentration is assumed not to be a
function of concentration. This is known not to be true over
large ranges of concentration, but is assumed to be so for the
relatively narrow range of values left after the accommodationinterpretation of apparent differences between concentrations

at different sampling locations. of high outlying values by the robust ANOVA. The third
assumption is very rarely valid in the sampling of naturalThe conclusions drawn from the ANOVA are broadly similar

to those that can be made from the visual inspection of the materials, which often give a few high outlying values. These
may be due, for example, to rare particles with high concen-raw test data, discussed above, before the application of the

computer program. trations of the analyte. Log transformation has been suggested
to overcome this problem,14 but the more recent approachWhere the reduction of the measurement uncertainty is

required for future measurements, the information from the applied here has been to use robust statistics. However, the
application of robust ANOVA introduces further assumptions.ANOVA can be used to identify where the improvements can

be made most effectively. If the measurement uncertainty is The program is adjusted for a specified maximum incidence of
outlying values, in this case 10% of the total population.15 Ifdominated by the sampling variance, then this is clearly where

reductions in variance will produce the greatest improvements there is a higher proportion of outlying values, then this would
be expected to lead to somewhat erroneous estimates of theoverall, because of the summation of squared terms in eqn. (2).

This reduction might, for example, be achieved by increasing component variances.
Another limitation on the technique is imposed by thethe mass of the sample by a factor that can be calculated by

an equation discussed below. Conversely the dominating number of measurements used for the estimation of the uncer-
tainty. In the example test data, 18 sets of measurements weremeasurement variance may come from the chemical analysis,

in which case this can usefully be reduced by the selection of used, this leads to quite reliable estimates of the component
variances. If however only a few locations had duplicatea more precise analytical method.

It is possible to modify the experimental design to gain more samples then there would be large uncertainties on the esti-
mates of the variance. Whether one variance estimate isdetailed information on the sources of the uncertainty. This

could be implemented by including duplication at another significantly greater than another can be evaluated using the
F-test, with reference to the number of measurements uponlevel of the procedure, such as for the instrumental

measurements. which it is based.14 A practical minimum number of locations
at which to take duplicate samples is eight, in order to give aThere is also a minimum value for the analytical component

of 1% of the measurement variance. Below this figure further reasonably reliable estimate of the component variances. An
‘unbalanced’ experimental design has been suggested to makereductions in analytical uncertainty would not produce any

appreciable reductions in the overall measurement uncertainty. the application of ANOVA more cost-effective.22
As was discussed previously, the method described aboveSimilarly if the total measurement uncertainty accounts for

less than 1% of the total variance, then further reductions are only estimates the random component of the uncertainty, and
does not estimate any systematic errors in the sampling orunlikely to substantially change the interpretation of the

differences between the concentrations at different sampling analysis (i.e., sampling or analytical bias). This limitation can
be overcome by the following approaches.locations.

These ideal maximum values for the variance proportions
are what have become known as ‘fitness-for-purpose’ criteria.

Estimation of systematic errors
In this case, if the true variation in the analyte is large then
the measurement uncertainty required to describe that vari- Analytical bias can be estimated independently by the use of

certified reference materials. Ideally this bias should be esti-ation is relatively large. Alternatively, if the true variation in
the analyte concentration is small then a much smaller mated with several reference materials covering a range of

analyte concentrations, and all with a matrix compositionmeasurement uncertainty will be required. It is also possible
to introduce financial considerations in the consideration of perfectly matched with that of all of the samples. Whether the

estimated bias value is statistically different from zero can befitness-for-purpose. This has been approached using a loss
function to apply cost-benefit analysis to the selection of the checked with a t-test against the certified concentration value

for each reference material.23 Alternatively a comparison ofmost appropriate level of measurement uncertainty.21 In this
case the relative expenditure on the sampling and chemical the bias detected by several reference materials can be made
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as a function of concentration.24 Analytical bias can also be concentration reported by this one participant is closer to the
‘true’ value, by perhaps avoidance of a bias that has affectedincorporated automatically, if the uncertainty is estimated by

the use of a sampling proficiency test, in which all participants the other participants. In this case a more reliable estimate of
the uncertainty would be obtained by using the classical ratheranalyse their own samples (discussed below).5

Sampling bias can also be estimated automatically within a than the robust ANOVA.
Theoretically, it is possible to predict the uncertainty ofsampling proficiency test. In this case the systematic error of

one participant can be regarded as a random error when sampling from a mathematical model such as that of Gy.27
His equation can be simplified as:-viewed across all the participants.5 For use with the more

simple method described here, the sampling bias can be
s2=Cd3/m (4)

estimated separately in principle by two methods. If one
sampler applies a specific protocol to a reference sampling Where s is the standard deviation of sampling error, m is the

sample mass and d is the size of the largest particles in thetarget (RST), then the sampling bias can be estimated by
comparison with the certified value of the analyte concen- sample. The constant C is the product of four factors relating

to the particles being sampled which are (i) a liberation factortration. This method is directly analogous with the use of
reference materials for the estimation of analytical bias,25,17 (to express how much of the analyte will be recovered from

any grain of the sample), (ii) a shape factor (e.g., expressingbut has not yet been tested. It depends on establishing a
certified value for the candidate RST by a consensus from an whether grains are spherical or platy), (iii) a particle size

distribution factor, and (iv) a composition factor (expressinginter-organisational sampling trial, which has to incorporate
the inevitable heterogeneity of the sampling target.4 the analyte concentration in each grain). A readable expla-

nation of sampling theories that includes Gy’s, with workedA second possible method for the estimation of sampling
bias is by the use of the sampling equivalent of the analytical examples is given by Smith and James.28

In practice however, such equations are based on very‘spike recovery’ test. In this case a synthetic RST is prepared
by adding a known concentration of the analyte to the idealised models of the system being sampled. For example,

estimates of the four factors within Gy’s constant C are difficultsampling target. It is theoretically possible therefore to estimate
the bias of any measurement (sampling+analysis) against the to determine with any degree of certainty and may well vary

in different parts of the sampling target. This equation hasknown concentration value rather than against a consensus
value. Research into this technique is currently being been used to estimate the sample mass required to achieve a

specified sampling error and in this role it has been found toundertaken by the author and co-workers.
often overestimate the mass required,28 which usefully gives
an uncertainty that is better than required. When applied to

Incorporation of systematic errors into uncertainty estimates
estimate uncertainty however, it would require a large amount
of effort to estimate all the parameters required and wouldThe estimates of the analytical or sampling bias can be added

into an estimate of uncertainty, but there is no consensus on still be unlikely to provide a reliable estimate of the uncertainty.
Experimental work would be required to confirm thisthe best method to be employed for doing so. The suggestion

from ISO8 is that the estimated bias should be used to correct conjecture.
A very useful role for such equations however, is makingthe concentration estimates and that the uncertainty on the

estimated bias should be added to the uncertainty as a variance. recommendations for changing the uncertainty of sampling,
once it has been estimated experimentally. For example eqn. (4)As was discussed earlier, this is often impractical for many

analytical systems where the bias is either unrecognised or indicates that a doubling of sample mass will reduce measure-
ment variance by a factor of two, and therefore uncertainty byeffectively unknown at the particular concentration levels

found in the samples. Alternatively it has been suggested that a factor of √2. In one sense experimental measurements are
being used to estimate the variables in the equation which canthe maximum value of bias found should be considered as the

range (r) of a rectangular distribution to be added to the then be used to predict changes in the uncertainty. Overall
therefore, it seems more reliable to measure uncertainty fromuncertainty. The standard uncertainty of a rectangular distri-

bution12 is given by r√3, and this figure can be added to the sampling experimentally than to predict it theoretically.
A very different approach to estimating uncertainty fromother estimates of uncertainty by its variance.26 A second

alternative has also been suggested in which the full value sampling comes from the study of geostatistics, using a particu-
lar technique called kriging.29 This statistical technique isof the best estimate of the bias is added to the estimate

of the expanded uncertainty when establishing the range of primarily aimed at estimating analyte concentrations between
the sampling locations. It is based on the characterisation ofthe uncertainty for comparison with threshold values of

concentration.5 the change in covariance of measurements made at pairs of
sampling locations, with increasing distances of separation.
The model fitted to this variation is called a variogram. The

Alternative options for the estimation of uncertainty
intercept of the variogram, called the ‘nugget’, is the variance
remaining at zero distance, and will reflect some randomThree other experimental methods have been described for the

estimation of measurement uncertainty from sampling, as components of the measurement uncertainty. The variogram
can be used to estimate not only the concentration of intermedi-outlined above.5 They are progressively more complex to

implement than the first method described here, but encompass ate locations within the sampling area, but also a kriging
standard error of estimation, which is also an uncertainty. Themore sources of uncertainty and should therefore give increas-

ingly better estimates of the overall uncertainty of the measure- essential difference between this uncertainty and those dis-
cussed above, is that it refers to concentrations between ratherments made. In the inter-organisational sampling trial

(Method 3), ANOVA is also used for the estimation of than at the sampling locations. If the method described in this
paper is used to improve the estimate of uncertainty at theuncertainty but is based on a different experimental design.

Details of this application are described elsewhere3 but one sampling locations (e.g., by including sampling bias), then
kriging can be used to improve the estimates of uncertaintiesinteresting difference is in questioning the benefits of using

robust statistics in this case. If one of the nine participants in between the sampling locations. In this way the two approaches
are complementary in their objectives. The construction of aan inter-organisational trial produces an outlying value of

concentration, then this will be down-weighted in the robust realistic variogram depends on the collection of a large number
of samples, spread evenly across the sampling target. Thisestimate of the uncertainty. It may be however that the
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