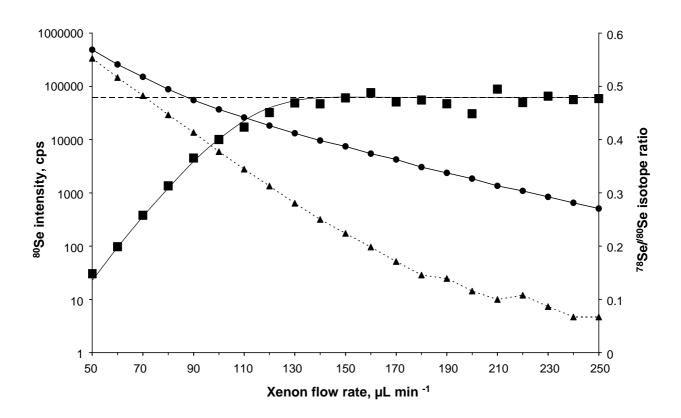
ELECTRONIC SUPPLEMENTARY INFORMATION

ICP MS (Agilent 7500ce)	Xenon collision cell	Hydrogen reaction cell
rf power	1550 W	1500 W
Sampling depth	9 mm	7.5 mm
Cones	Nickel	Nickel
Nebulizer gas flow	0.9 L min ⁻¹	0.8 L min ⁻¹
Makeup gas flow	0.35 L min ⁻¹	0.25 L min ⁻¹
Cell gas flow	130 - 160 μL min ⁻¹ Xe	3 - 5 mL min ⁻¹ H ₂
Extraction lens 1	8.0 V	4 V
Extraction lens 2	-130 V	-140 V
Cell entrance	- 28 V	- 50 V
Octopole bias	- 45 V	- 18 V
Quadrupole bias	- 1.4 V	- 17 V


Instrumental parameters of the ICP MS

Elimination of polyatomic interferences with xenon as collision gas

 Ar_2^+ interferences. The collision energy resulting from the collision of argon dimers with xenon atoms can be calculated using eqn. (1):

$$E_{cm} = \frac{m_c}{m_c + m_i} E_{lab} \tag{1}$$

 E_{cm} corresponds to the collision energy in the centre of mass, m_c to the mass of the collision gas and m_i to the mass of the polyatomic ion. E_{lab} is the kinetic energy achieved by the potential difference between the extraction lens and the collision/reaction cell. Under the instrumental conditions used in this study the collision energy was calculated to be 22.4 eV which was distinctly higher than the dissociation energy of the Ar₂⁺ ion (1.24 – 1.33 eV).¹ Thus a collision induced dissociation of the argon dimers with xenon should be possible under these conditions. The elimination of the Ar₂⁺ interferences was achieved by a xenon flow rate above 130 µL min⁻¹ which was confirmed by an accurate ⁷⁸Se/⁸⁰Se isotope ratio measurement (Figure) without mathematical interference corrections.

Selenium intensity and isotope ratios as function of the xenon gas flow rate in the collision cell. (•) ⁸⁰Se intensity for a 100 μ g L⁻¹ selenium solution; (▲) ⁸⁰Se intensity for a blank solution (1.5 % (v/v) HNO₃). (■) Experimental ⁷⁸Se/⁸⁰Se isotope ratios after mass bias correction; dashed horizontal line: theoretical ⁷⁸Se/⁸⁰Se isotope ratio (0.47934).

(1) W. R. Wadt, J. Chem. Phys., 1978, 68, 412.