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Description of the programme “CO-IN” which models the CLS detector. 
 

 
INPUT DATA   
 
file INPUT containing following data: 
 

• τ, Δτ 
• I, σ, ω, A21 
• M, Pbg, Ibg, PART 

 
τ, Δτ - estimated time of flight of an ion through the flow tube (τ), and detection volume (Δτ) 
in seconds (s). 
I – maximum laser intensity in (W/m2), σ - cross section in (m2), ω - angular frequency in 
(Hz), and A21 – transition probability in (s-1). 
M – ion mass in (amu), Pbg – photon background in (cps), ion flow rate in (cps), and PART – 
fraction of total ions that are analyte ions in (%). 
 
file DF.DAT containing the ion energy distribution function (EDF) as a set of discrete points 
 
E1(eV)     f1 
E2(eV)     f2 
     :           : 
EN(eV)     fN 
 
where N<102. EDF is not be normalized because its normalization is performed later in the 
course of program operation. 
 

SUBROUTINES 
 
DISTRBTN: This subroutine converts the EDF to a discrete distribution in order to accelerate 
the whole algorithm. It means that the program works with a large, but finite number of 
energy values, usually 1024, which can be extended at 2048, 4096 or 8192. Besides, this 
subroutine provides works with an arbitrary EDF which is given in the file DF.DAT. 

 

TIME0: This subroutine is used in several places in the program, whenever it is necessary to 
draw a time when some random process will occur (e.g appearance of a background photon in 
the photo detector, appearance of an ion in the detection volume, etc.). Each time, a new value 
is drawn in agreement with the known rate for this process. 

 

KIND0: This subroutine decides whether an ion is analyte or background ion, in agreement 
with the variable PART which is given in file INPUT. 

 

Ernd: The main task of this subroutine is establishing a correspondence between random 
numbers with uniform distribution, and energy values with a given EDF. 



CONDITIONS   



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Flow diagram of Coincidence Simulation code 
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Calculation of the Hyperfine Splitting 
 
The splittings may be calculated from a knowledge of the I, J, and F quantum numbers and 

the hyperfine splitting constants, thus 
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Factor a(l=0,1) is given by Fermi-Segre formula: 
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where F(j,Z) (see plot below) and δ are relativistic corrections: 
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Plot of Relativistic Correction F(j,Z) versus Atomic Number 



 

Modelling the Laser Beam and Line Shape 

 
 

Schematic of the beam 

 

Consider a spatially homogenous laser beam implying that the radiation intensity I (W/m2) 

satisfies the criteria 
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Let E (Joules) be the energy passing through the area S (m2) in a time Δt (s): 
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Examples: 

 

1) The laser approximates a monochromatic source with circular frequency ωl in which 

case 
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2) Another possible laser shape function is an inverse Voigt profile (see Schematic) 
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where P(a,x) and Q(a,x) are incomplete gamma functions defined as: 
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A is the normalisation constant given by: 
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Schematic of the laser line shape 

 



Calculation of Saturation Power and Fluorescence Yield 

 
1 Pumping Parameters   

A system comprising only two spectroscopic states, the ground state and one 

excited state, without hyperfine splitting (applicable only to isotopes with even 

Z) is the simplest model for the proposed detection scheme, viz:  

 

     

 

 

 

 

 

      

 

Schematic  - A Model Two Level System. 

 

 

 

The probability per unit time, Wki, that a photon of energy ω  will be absorbed, in the most 

general case is given by expression: 
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where )131( −− sHzmJkiB  is the Einstein coefficient for absorption, and )( 0ωω −g  - the 

atomic spectral line shape function (Lorentzian), which satisfies relation: 
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Further discussions are limited to the case where )()( lf ωωδω −= , thus: 
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where ωl is the frequency of monochromatic laser. 

 

The rate at which excited states are created through the absorption of photons is therefore 

given by: 

 

 

ikli BNrateUpward )(~ ωρ=  (4) 

 

where Ni  is the number density of lower state atom/ions (m-3) and 

 

 

oki NNN =+  (5) 

  

N0 is the total atomic/ionic density (m-3). 

 

When considering one ion/atom Ni is defined as the fractional population of the ground state 

at any instant. 

 



The population generated by thermal processes (radiational and collisional) can be ignored for 

transitions in the visible and UV parts of the spectrum..  

 

The de-population of the excited state occurs through spontaneous emission (the signal to be 

measured) and stimulated emission (potentially a much larger signal than spontaneous 

emission, but indistinguishable from the source laser photons). The probability per unit time 

for the decay of an excited state is given by: 
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Thus the downward rate becomes: 
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1.1 Rate equation for a two-level system in the presence of a laser beam   

These equations can be simplified by expressing the radiation-induced probabilities as: 
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 and also recognising that 

 

 

kiA
1

=τ
 (11) 

 

Then the rate at which the upper state is populated is given by: 
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and similarly the rate at which the lower state is de-populated is given by: 
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2 Definition of Saturation Intensity Is   

 

Saturation intensity is defined in terms of the laser gain coefficient )(ωγ  (equivalent to 

negative value absorption coefficient), Assuming )(0 ωγ  is the small signal ( 0=I ) 

gain/absorption coefficient, generally we have, for a two-level atomic system: 
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Two different expressions have been derived subject to different laser conditions, i.e. small 

laser intensity and the large laser intensity. 

 

2.1 Small Laser Intensity Case (Nk ≈ 0)   

 

When a laser beam with a photon flux F goes through a medium with length dz  and cross-

section S  having two arbitrary energy levels, in the steady-state case, the decrease in the 

number of photons must be equal to the difference between the absorption and the stimulated 

emission, thus:  

 

 

SdzNWNWSdF iikkki )( −−=  (18) 
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and 
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where ikσ  and kiσ  are stimulated absorption and emission cross-sections, respectively (see 

Appendix 1 for further details). 

 

Equation (18) may be rewritten as 
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For small laser intensity, equation (21) may be simplified by assuming that, 0=kN  and 

SdzNn i=  where n is the number of the ions in the interaction region. Allowing the 

additional simplification that ki gg =  yields: 
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Thus dF represents the loss of flux from the beam passing through an assembly of absorbers 

and is therefore numerically equal to the fluorescence flux in photons s-1cm-2. This formula is 

in complete agreement with equation (1) given by Eastham et al.1  Note dF is expressed in 

terms of the laser beam geometry and therefore the geometry of the system has to be 

considered when calculating the detectable number of photons. 

 

 

2.2 Large Laser Intensity Case (Nk ≠ 0)  

 

The treatment that follows can be applied to individual ions, which can, for optical purposes 

be regarded as a point source. 

 

In this case, the resonance fluorescence rate R  is defined as: 
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Then substitute equation (5) and (15) into (24), 
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Introducing equation (16), equation (25) is written in terms of the saturation power as: 
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At saturation, 1
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>>
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I , equation (26) becomes: 
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sR  is called the saturation fluorescence rate. In terms of equation (27), equation (6) may be 

rewritten as 

 

 

)
)(

(1

1)
)(

(

ls

ls
s

I
II

IRR

ω
ω +

=
 (28; 26) 

 

 

This result is in complete agreement with equations (1), (2) given by She et al.2 

 

With the relationship between Einstein Coefficients 32
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Replacing the general shape function g(ωl - ω0) by the natural line shape which as described 

above is relevant to conditions in the beam, yields the desired expression: 
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For a narrow laser line such as that given by the Ti:Sapphire laser, Is at the centre of the 

absorption profile becomes: 
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where gN(0) is given by equation 13 in the printed document 
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laser wavelength. Equation (30) can also be expressed as: 
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This equation is in agreement with the equation (3) given by She et al2. Taking into account 

real laser spectral shape, the last formula can be rewritten in the form 
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The cross sectional area of the laser beam S is given simply by: 
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The maximum laser intensity is: 
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Defining the ratio between the beam intensity and the saturation intensity as: 
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The actual fluorescence rate for the laser intensity Imax is given by: 
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compared with the saturated fluorescence given by equation (27). 

 

 

Calculation of Detection Limits 

The procedure for calculating detection limits was as follows: 

 

Use equation 29 in the printed manuscript to establish the signal count NS required to give a 

signal-to-noise ratio of 3 for a given background count of NB. This was accomplished using 

the Solver function in Excel (Microsoft Office 2003). 

 

The value of NB for a 10 minute count period was determined according to the origin of the 

background: 

(i) For isobaric ions the background was set at 106 cps for non-CLS detection, but 

attenuated by the factor 4 10-4 for CLS detection. 

(ii) For ions at  ± 1 amu of any element the background was set at 1010 cps attenuated by the 

mass spectrometric abundance sensitivity of  10-5 for non-CLS detection. 



(iii) CLS discriminates between ions of other elements and ions of the same element because 

the latter can potentially be pumped and trigger the CLS channel.  Thus for CLS 

detection of ions at ± 1 amu, only ions of the same element are considered in Table 7 as 

these represent a worse case scenario. The effective background is calculated by the 

product of the ± 1 amu count rate, the mass spectrometric abundance sensitivity and the 

element specific optical abundance sensitivity for CLS detection (hence element specific 

NS values in the Table 7). 

(iv) The case of  ions at ± 1 amu for different elements with CLS detection has not been 

specifically dealt with in the table because the calculation is the same as for isobaric 

ions of a different element. The number of  background ions increases by the  

background count at ± 1 amu attenuated by about 4 10-9, this being the product of the 

mass spectrometric abundance sensitivity and the CLS attenuation factor, which yields 

only a small increase in background in most circumstances. 

 

Having obtained NS the actual number of ions necessary to achieve NS counts was calculated 

taking into account: 

(i)  Photon burst capability: optical detector becomes 100% efficient, no radiation trapping 

and no hyperfine components are present so that the detectable ion flux represents only 

the mass spectrometric ion transport efficiency (beaker to detector) modified by the 

degree of ionisation. 

 

(ii) Optical trapping occurs: as for (i) above but now including the effect of the optical 

detection efficiency. 

 

(iii) Odd numbered ions with hyperfine structure: as for (ii) above but modifying the 

detection efficiency by a factor equal to one half the number of  hyperfine components.  

 

Branching was not factored in to the equation because it was demonstrated that in nearly all 

cases it would still yield at least one detectable photon. 
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