Supplementary material (ESI) for Journal of Analytical Atomic Spectrometry This journal is © The Royal Society of Chemistry 2009

# Magnetic Nano-adsorbent integrated with Flow-injection System for Trace Analysis of Multiple Heavy Metals

Pei-Ling Lee,<sup>a</sup> Yuh-Chang Sun<sup>a</sup> and Yong-Chien Ling<sup>\*b</sup>

Department of Biomedical Engineering and Environmental Sciences,<sup>a</sup> Department of Chemistry<sup>\*b</sup>, National Tsing Hua University, Hsinchu 30013, Taiwan

## **Electronic Supplementary Information**

## **Power X-ray Diffraction Measurement**

Fig. S-1 shows the powder X-ray diffraction (PXRD) patterns of the pristine MNPs and MNPs-PAA, respectively. The PXRD characteristic peaks ( $2\theta = 30.26$ , 35.45, 43.3, 53.5, 57.12,  $62.65^{\circ}$ ) for iron oxide (Fe<sub>3</sub>O<sub>4</sub> or  $\gamma$  -Fe<sub>2</sub>O<sub>3</sub>), which were marked with respective indices (220), (311), (400), (422), (511), (440), appeared in both samples. The average crystallite size revealed from peak broadening was about 8 nm (and 4 nm) for pristine MNPs (and MNPs-PAA) according to Scherrer equation.<sup>1</sup>

$$D = \frac{0.9 \ \lambda}{\beta \cos \theta}$$

where D is the average crystallite size (nm),  $\lambda$  is the wavelength of X-rays (CuK  $\alpha$  :  $\lambda = 0.1540$  nm),  $\theta$  is the Bragg diffraction angle, and  $\beta$  is the full width at half maximum (FWHM in radians).



**Fig. S-1** The powder X-ray diffraction (PXRD) patterns of (a) pristine MNPs, and (b) MNPs-PAA. The peaks are indexed to JCPDS card No. 19-0629.

## Supplementary material (ESI) for Journal of Analytical Atomic Spectrometry This journal is © The Royal Society of Chemistry 2009 Estimation of Total Surface Area Per Unit Volume (Table S-1)

- The number of MNPs-PAA in one cm<sup>3</sup> is 8×10<sup>8</sup> particles (5-nm particle size; non-porous material). The surface area of one MNPs-PAA is 78.5 nm<sup>2</sup>. The total surface area per unit volume is 6.3×10<sup>20</sup> nm<sup>2</sup> cm<sup>-3</sup>.
- 2. The number of Amberlite XAD-4 in one cm<sup>3</sup> is 4096 particles (640- $\mu$ m particle size; porous material 10-nm pore size; assuming 100 % porosity). The surface area of one XAD-4 is 5.14×10<sup>12</sup> nm<sup>2</sup>, which is based on ~1.63×10<sup>10</sup> pores present in one XAD-4 (surface area of one 10-nm pore is 314 nm<sup>2</sup>). The total surface area per unit volume is 2.1×10<sup>16</sup> nm<sup>2</sup> cm<sup>-3</sup>.
- <sup>3.</sup> The number of C<sub>18</sub> in one cm<sup>3</sup> is 9×10<sup>9</sup> particles (4.81-μm particle size; porous material 8-nm pore size; assuming 100 % porosity). The surface area of one C<sub>18</sub> is 2.89×10<sup>8</sup> nm<sup>2</sup>, which is based on ~1.44×10<sup>6</sup> pores present in one C<sub>18</sub> (surface area of one 8-nm pore is 200.96 nm<sup>2</sup>). The total surface area per unit volume is 2.6×10<sup>18</sup> nm<sup>2</sup> cm<sup>-3</sup>

Table S-1. Comparison of specific surface area and relevant properties in different adsorbents

| Adsorbent                       | Particle<br>size     | Specific surface area | Pore size | Total surface<br>area per unit |
|---------------------------------|----------------------|-----------------------|-----------|--------------------------------|
|                                 | (nm)                 | $(m^2 g^{-1})$        | (IIII)    | $cm^{-3})^{a}$                 |
| MNPs-PAA                        | 5-10                 | 120                   | 2.7       | 6.3 x 10 <sup>20</sup>         |
| Amberlite<br>XAD-4 <sup>b</sup> | $6.4 	ext{ x10}^{5}$ | 831                   | 6~20      | 2.1 x 10 <sup>16</sup>         |
| $C_{18}^{c}$                    | $4.8 \times 10^3$    | 187                   | 8         | 2.6 x 10 <sup>18</sup>         |

 $^{\rm a}$  Calculations were based on non-porous MNPs-PAA and 100 % porosity in XAD-4 and  $C_{\rm 18}.$ 

<sup>b</sup> The specific surface area and pore size data were from reference<sup>2</sup> and manufacturing company.

 $^{\rm c}$  The particle size, specific surface area, and pore size data were from reference.  $^3$ 

Supplementary material (ESI) for Journal of Analytical Atomic Spectrometry This journal is © The Royal Society of Chemistry 2009 **FT-IR Measurements** 



Fig. S-2 The FT-IR spectra of pristine MNPs, MNPs-PAA, and PAA.

Comparing the FT-IR spectra of pristine MNPs, MNPs-PAA, and PAA shown in Fig. S-2, characteristic absorption band at 630 cm<sup>-1</sup> ascribed to Fe-O bond was expectedly present in both pristine MNPs and MNPs-PAA spectra. Similarly, characteristic bands at 3200 and 3400 cm<sup>-1</sup> ascribed to N-H stretching vibrations of amine and amide were present in pristine MNPs and MNPs-PAA spectra. The absorption bands at 1500 and 1640 cm<sup>-1</sup> characteristic of N-H bending vibration were present in the pristine MNPs spectrum only. Weak absorption bands at 1405, 1540, and 1710 cm<sup>-1</sup> were present in the MNPs-PAA spectrum. The 1710 cm<sup>-1</sup> band in PAA and MNPs-PAA spectra was ascribed to C=O from the carboxylic groups in PAA. On contrast, absorption bands at 1405 and 1540 cm<sup>-1</sup> present in MNPs-PAA spectrum only were presumably the outcome of acid-base binding between the PAA and the MNPs

to form carboxylate groups. Previous study ascribed 1405 and 1540 cm<sup>-1</sup> bands to COO<sup>-</sup> anti-symmetric and COO<sup>-</sup> symmetric vibrations, respectively.<sup>4, 5</sup> Thus, the bidentate bonding of the carbonyl groups to the most outer Fe atoms of MNPs could be demonstrated. Other characteristic absorption bands of PAA such as 1150-1280 cm<sup>-1</sup> (aliphatic acid), 1400-1450 cm<sup>-1</sup> (C-O stretch, deformation vibration of OH)<sup>1</sup>

Supplementary material (ESI) for Journal of Analytical Atomic Spectrometry This journal is © The Royal Society of Chemistry 2009 are also present in MNPs-PAA spectrum.

## **TGA Measurements**



Fig. S-3 The TGA curves of pristine MNPs, MNPs-PAA and PAA

Fig. S-3 shows the TGA curves of pristine MNPs, MNPs-PAA and PAA. For pristine MNPs, there are not significant weight lose. The PAA oligomer and MNPs-PAA simultaneously show the significant weight loses at two stages on contrast. The first stage of degradation is below 250  $^{\circ}$ C contributing to the decompositions of free carboxyl groups and dehydration. The second stage of degradation is 250  $^{\circ}$ C -800  $^{\circ}$ C attributing to the decompositions of polymer backbone.<sup>6</sup> The weight lose of MNPs-PAA due to dehydration is 2 % and 18 % for degradation of free carboxyl groups and polymer backbone. From the results of TGA analysis, 0.22 g PAA existing on 1 g MNPs would be presumed.

The estimated number of –COOH per unit area was  $9.02 \times 10^{11}$  molecules cm<sup>-2</sup>, which was based on average particles size of 5 nm and 28 AA molecules per one PAA molecule.

#### References

- 1. C. L. Lin, C. F. Lee and W. Y. Chiu, J. Colloid Interf. Sci., 2005, 291, 411-420.
- 2. K. L. Hubbard, J. A. Finch and G. D. Darling, *React. Funct. Polym.*, 1999, 40, 61-90.
- 3. F. Gritti and G. Guiochon, J. Chromatogr. A, 2006, 1115, 142-163.
- 4. R. G. C. Moore, S. D. Evans, T. Shen and C. E. C. Hodson, *Physica E*, 2001, 9, 253-261.
- 5. N. Shukla, C. Liu, P. M. Jones and D. Weller, J. Magn. Magn. Mater., 2003, 266, 178-184.
- 6. H. Kong, C. Gao and D. Y. Yan, J. Am. Chem. Soc., 2004, **126**, 412-413.