Electronic Supplement

Table S 1: ICP-MS acquisition parameters used in this work. ⁷¹Ga was used as internal standard for the low (⁷⁵As, ⁷⁷Se, ⁷³Ge, ⁸²Se), ¹¹³In for the middle (¹²⁶Te, ¹¹⁸Sn, ¹²¹Sb, ¹²⁷I) and ²⁰⁵Tl for the high mass range (²⁰²Hg, ²⁰⁹Bi).

Fig. S 1: P&T-GC/EI-MS/ICP-MS chromatogram from a parallel batch as in **Error! Reference source not found.** is shown. Please note the simultaneous ⁷⁵As-, ⁷⁷Se and ⁸²Se-signal for Me₂AsSeMe. Small differences in retention times are caused by the use of constant flow instead of constant pressure. Furthermore, purging time was 7 min instead of 12 min. As_u: unidentified As-species

Fig. S 2: EI-MS-spectra of synthesized MeAs(SMe)₂

Supplementary Material (ESI) for Journal of Analytical Atomic Spectrometry This journal is (C) The Royal Society of Chemistry 2009

Fig. S 3: additional ICP-MS mass traces of the measurement in Fig. 1. (a&b) P&T-GC/ICP-MS chromatogram of volatile Sb resp. Te species from headspace from feces amended with inorganic metal(loid)s analysed and (c-e) ICP-MS –mass trace of the continuous internal standards used in this study showing the good plasma stability during GC-analysis. Sb_u and Te_u: unidentified species.