Journal of Analytical Atomic Spectrometry

Precise U-Pb and Pb-Pb dating of Phanerozoic baddeleyite by SIMS with oxygen flooding technique

Qiu-Li Li¹, Xian-Hua Li¹*, Yu Liu¹, Guo-Qiang Tang¹, Jing-Hui Yang¹, Wei-Guang Zhu² 1. State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China

2. State Key Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002, China

Sample	²⁰⁶ Pb [#]	±1σ	²⁰⁷ Pb [#]	$\pm 1\sigma$	²⁰⁷ Pb ^{&}	$\pm 1\sigma$	t _{207/206}		²⁰⁷ Pb	U
spot #	$^{204}\mathrm{Pb}_\mathrm{m}$	(%)	$^{206}\mathrm{Pb}_\mathrm{m}$	(%)	206 Pb _c	(%)	(Ma)	±lσ	(cps)	ppm
FC46										
FC46@1	1.7E+06	48	0.07609	0.14	0.07608	0.14	1097	3	2357	948
FC46@2	6.9E+05	30	0.07630	0.14	0.07628	0.15	1102	3	2120	853
FC46@3	7.7E+05	38	0.07625	0.17	0.07623	0.17	1101	3	1667	669
FC46@4	2.6E+06	56	0.07627	0.13	0.07626	0.13	1102	3	2673	1078
FC46@5	1.8E+06	38	0.07612	0.11	0.07611	0.11	1098	2	3907	1572
FC46@6	5.1E+05	38	0.07592	0.21	0.07589	0.21	1092	4	1053	425
FC46@7	4.1E+05	29	0.07609	0.18	0.07606	0.18	1097	4	1383	556
FC46@8	8.6E+05	32	0.07618	0.14	0.07616	0.14	1099	3	2332	941
FC46@9	1.3E+06	35	0.07617	0.14	0.07616	0.14	1099	3	3399	1366
FC46@10	4.0E+05	38	0.07612	0.26	0.07608	0.26	1097	5	847	340
FC46@11	4.0E+05	38	0.07630	0.18	0.07626	0.18	1102	4	1358	544
FC46@12	1.2E+06	33	0.07607	0.11	0.07606	0.11	1097	2	3660	1462
FC46@13	4.0E+05	27	0.07603	0.16	0.07599	0.16	1095	3	1651	662
FC46@14	1.2E+06	48	0.07604	0.18	0.07603	0.18	1096	4	1635	657
FC46@15	2.6E+05	27	0.07623	0.21	0.07618	0.21	1100	4	1073	424
FC46@16	3.7E+05	28	0.07618	0.18	0.07614	0.18	1099	4	1378	546
FC46@17	2.6E+05	26	0.07584	0.19	0.07579	0.20	1090	4	1170	464
FC46@18	4.9E+05	24	0.07617	0.14	0.07614	0.14	1099	3	2331	918
FC46@19	1.0E+06	38	0.07577	0.15	0.07576	0.15	1089	3	2067	821
FC46@20	3.4E+05	29	0.07639	0.20	0.07635	0.20	1104	4	1361	536
FC46@21	3.8E+05	24	0.07631	0.17	0.07627	0.17	1102	3	1610	637
FC46@22	3.5E+05	30	0.07626	0.20	0.07622	0.21	1101	4	1080	426
FC46@23	3.7E+05	29	0.07623	0.19	0.07619	0.19	1100	4	1247	494
FC46@24	1.8E+06	48	0.07610	0.14	0.07609	0.14	1097	3	2488	985
FC46@25	3.7E+05	31	0.07631	0.19	0.07627	0.19	1102	4	1236	490
001202 2										
U8JXU2-2	1.15+05	20	0.0((20)	0.46	0.07717	0.46	011	10	210	122
08JX02-2@1	1.1E+05	32	0.06629	0.46	0.06616	0.46	811	10	210	133
08JX02-2@2	3.9E+04	35	0.06610	0.83	0.06573	0.85	798	18	65	41

Appendix Table 1 Baddeleyite Pb isotopic ratios determined by multi-collector SIMS mode

08JX02-2@3	4.2E+04	33	0.06646	0.69	0.06612	0.72	810	15	92	58
08JX02-2@4	1.2E+05	42	0.06612	0.68	0.06600	0.68	807	14	96	61
08JX02-2@5	8.2E+05	49	0.06624	0.28	0.06622	0.28	813	6	671	424
08JX02-2@6	2.9E+05	35	0.06639	0.31	0.06634	0.31	817	6	473	298
08JX02-2@7	4.2E+05	48	0.06613	0.39	0.06610	0.39	810	8	341	216
08JX02-2@8	1.0E+04	12	0.06792	0.37	0.06648	0.46	822	10	319	196
08JX02-2@9	6.2E+04	35	0.06591	0.69	0.06568	0.70	796	15	101	64
08JX02-2@10	4.9E+04	24	0.06717	0.56	0.06688	0.57	834	12	175	108
08JX02-2@11	3.4E+04	35	0.06668	0.83	0.06626	0.87	815	18	64	40
08JX02-2@12	2.1E+05	35	0.06654	0.36	0.06647	0.36	821	7	349	217
08JX02-2@13	3.9E+05	38	0.06647	0.37	0.06643	0.37	820	8	319	199
08JX02-2@14	1.4E+05	33	0.06668	0.38	0.06658	0.38	825	8	304	190
08JX02-2@15	2.4E+04	14	0.06724	0.38	0.06664	0.40	826	8	308	190
08JX02-2@16	2.0E+05	35	0.06573	0.55	0.06566	0.55	796	12	163	103
08JX02-2@17	8.0E+04	27	0.06664	0.45	0.06646	0.46	821	10	217	136
08JX02-2@18	8.0E+04	33	0.06606	0.50	0.06588	0.51	802	11	174	110
08JX02-2@19	6.5E+04	29	0.06673	0.51	0.06651	0.53	822	11	166	104
08JX02-2@20	1.8E+05	33	0.06595	0.55	0.06587	0.56	802	12	144	91
08JX02-2@21	4.2E+05	42	0.06623	0.31	0.06620	0.31	813	6	464	294
08JX02-2@22	4.5E+04	32	0.06600	0.71	0.06568	0.73	796	15	87	56
08JX02-2@23	1.0E+05	28	0.06619	0.30	0.06605	0.31	808	8	276	245
08JX02-2@24	2.8E+05	43	0.06633	0.36	0.06628	0.36	815	9	230	201
08JX02-2@25	2.3E+05	41	0.06623	0.36	0.06617	0.36	812	10	190	169
Kovdor										
KOVDOR@1	3.1E+04	35	0.05518	0.94	0.05471	1.00	400	22	48	81
KOVDOR@2	7.8E+04	48	0.05442	0.93	0.05423	0.95	381	21	50	85
KOVDOR@3	2.3E+05	48	0.05428	0.56	0.05421	0.56	380	13	151	256
KOVDOR@4	6.9E+04	48	0.05443	0.99	0.05422	1.01	380	23	45	75
KOVDOR@5	3.9E+04	48	0.05575	1.30	0.05537	1.35	427	30	26	43
KOVDOR@6	4.1E+04	48	0.05422	1.31	0.05387	1.35	366	30	26	44
KOVDOR@7	4.9E+04	32	0.05463	0.75	0.05433	0.77	385	17	78	133
KOVDOR@8	6.5E+04	29	0.05419	0.57	0.05397	0.59	370	13	131	226
KOVDOR@9	1.3E+04	31	0.05491	1.29	0.05375	1.49	361	33	26	44
KOVDOR@10	2.2E+04	26	0.05499	0.90	0.05433	0.96	385	22	54	91
KOVDOR@11	2.5E+04	35	0.05515	1.05	0.05457	1.13	395	25	40	67
KOVDOR@12	1.2E+04	24	0.05443	1.12	0.05321	1.27	338	29	35	59
KOVDOR@13	2.2E+04	32	0.05407	1.11	0.05341	1.19	346	27	36	62
KOVDOR@14	2.0E+04	30	0.05534	1.05	0.05462	1.13	397	25	39	67
KOVDOR@15	5.5E+04	18	0.05425	0.35	0.05399	0.36	371	8	360	622
KOVDOR@16	3.1E+04	35	0.05424	0.96	0.05377	1.02	361	23	47	82
KOVDOR@17	1.5E+04	32	0.05513	1.29	0.05412	1.45	376	32	26	44
KOVDOR@18	4.7E+04	35	0.05466	0.77	0.05434	0.80	385	18	73	125
KOVDOR@19	1.2E+05	32	0.05500	0.47	0.05489	0.47	408	11	201	341

KOVDOR@20	1.3E+04	30	0.05637	1.36	0.05527	1.51	423	34	25	42
LOVI 01										
LGXL-01	0.05.05	2.6	0.04000	0.40	0.04006	0.40	100			
LGXL01@1	8.3E+05	36	0.04988	0.19	0.04986	0.19	189	4	747	2549
LGXL01@2	1.0E+07	100	0.05003	0.19	0.05003	0.19	196	4	714	2436
LGXL01@3	1.0E+07	100	0.05011	0.32	0.05011	0.32	200	7	242	826
LGXL01@4	1.7E+06	36	0.05002	0.13	0.05001	0.13	195	3	1479	5085
LGXL01@5	3.4E+05	57	0.04974	0.42	0.04970	0.42	181	10	138	479
LGXL01@6	1.0E+07	100	0.05013	0.34	0.05013	0.34	201	8	210	727
LGXL01@7	1.1E+04	9	0.05146	0.38	0.05012	0.46	201	11	166	561
LGXL01@8	1.8E+04	10	0.05096	0.38	0.05014	0.42	201	10	196	682
LGXL01@9	5.7E+05	36	0.05022	0.22	0.05019	0.22	204	5	530	1890
LGXL01@10	3.3E+05	49	0.05005	0.37	0.05001	0.37	196	9	182	657
LGXL01@11	6.4E+04	26	0.05010	0.48	0.04987	0.49	189	11	107	389
LGXL01@12	8.6E+04	29	0.05019	0.47	0.05002	0.48	196	11	110	405
LGXL01@13	9.4E+04	26	0.05009	0.40	0.04993	0.41	192	9	155	579
LGXL01@14	7.9E+04	26	0.05015	0.45	0.04996	0.46	193	11	122	462
LGXL01@15	8.2E+04	26	0.05014	0.40	0.04996	0.41	193	10	152	583
LGXL01@16	1.0E+07	100	0.04964	0.35	0.04964	0.35	178	8	220	862
LGXL01@17	3.4E+05	19	0.05008	0.18	0.05004	0.18	197	4	878	3443
LGXL01@18	8.9E+04	25	0.05011	0.41	0.04994	0.42	192	10	147	581
LGXL01@19	1.0E+07	100	0.05030	0.46	0.05030	0.46	209	10	118	470
LGXL01@20	1.0E+07	100	0.05006	0.46	0.05006	0.46	198	11	117	482
LGXL01@21	1.0E+07	100	0.05004	0.45	0.05004	0.45	197	10	122	507
LGXL01@22	1.4E+05	26	0.05012	0.34	0.05002	0.34	196	8	215	896
LGXL01@23	6.4E+04	17	0.05019	0.35	0.04996	0.37	193	8	195	819
LGXL01@24	7.5E+04	26	0.05048	0.43	0.05028	0.44	208	10	133	579
LGXL01@25	3.2E+04	18	0.05060	0.47	0.05014	0.51	202	12	113	508

 $\frac{\#^{204}\text{Pb}}{^{206}\text{Pb}_{m}} \text{ and } \frac{^{207}\text{Pb}}{^{206}\text{Pb}_{m}} \text{ are the measured values.}$

Table 2 Baddeleyite U-Th-Pb data by mono-collector mode

Sample spot #	U (ppm)	Th (ppm)	U U	$f_{206}^{\&}$ (%)	²⁰⁷ Pb ²⁰⁶ Pb	±1σ (%)	²⁰⁷ Pb ²³⁵ U	±1σ (%)	$\frac{^{206}\mathrm{Pb}}{^{238}\mathrm{U}}$	±1σ (%)	t _{207/206} (Ma)	±lσ	t _{207/235} (Ma)	±lσ	t _{206/238} (Ma)	$\pm l\sigma$
Session 1 FC4b																
FC4b@1	796	6	0.011	0.00	0.07640	0.5	2.096	2.3	0.1989	2.3	1105	10	1147	16	1170	24
FC4b@2	750	11	0.014	0.01	0.07601	0.5	1.871	2.3	0.1785	2.3	1095	10	1071	15	1059	22
FC4b@3	1098	11	0.010	0.00	0.07611	0.4	1.982	2.3	0.1888	2.3	1098	8	1109	16	1115	23
FC4b@4	457	4	0.008	0.00	0.07571	0.6	2.023	2.3	0.1938	2.3	1088	11	1123	16	1142	24
FC4b@5	425	Э	0.007	0.00	0.07578	0.6	2.035	2.3	0.1948	2.3	1089	12	1127	16	1147	24
FC4b@6	390	4	0.011	0.00	0.07573	0.7	2.041	2.4	0.1955	2.3	1088	14	1129	16	1151	24
FC4b@7	1545	10	0.007	0.00	0.07641	0.3	1.995	2.3	0.1893	2.3	1106	7	1114	16	1118	23
FC4b@8	880	10	0.011	0.00	0.07648	0.4	2.032	2.3	0.1927	2.3	1108	6	1126	16	1136	24
FC4b@9	476	4	0.009	0.00	0.07649	0.6	2.085	2.3	0.1977	2.3	1108	11	1144	16	1163	24
FC4b@10	888	8	0.009	0.01	0.07630	0.5	1.973	2.3	0.1876	2.3	1103	6	1106	16	1108	23
FC4b@11	861	7	0.009	0.00	0.07582	0.4	1.949	2.3	0.1864	2.3	1090	6	1098	16	1102	23
FC4b@12	756	9	0.008	0.01	0.07649	0.7	1.898	2.4	0.1800	2.3	1108	14	1080	16	1067	22
08JX02-2																
08JX02-2@1	141	5	0.039	0.54	0.06646	2.0	1.279	3.1	0.1396	2.4	821	41	836	18	842	19
08JX02-2@2	69	7	0.024	00.00	0.06678	1.9	1.256	3.0	0.1364	2.3	831	40	826	17	824	18
08JX02-2@3	682	17	0.025	0.00	0.06731	0.8	1.326	2.4	0.1429	2.3	847	16	857	14	861	18
08JX02-2@4	78	7	0.028	0.00	0.06672	1.9	1.208	3.0	0.1313	2.3	829	39	804	17	795	17
08JX02-2@5	42	1	0.032	0.06	0.06668	2.3	1.165	3.2	0.1267	2.3	828	48	784	18	769	16
08JX02-2@6	86	7	0.019	0.15	0.06757	2.1	1.202	3.1	0.1290	2.3	855	42	802	17	782	17
08JX02-2@7	09	2	0.028	0.16	0.06639	2.2	1.193	3.2	0.1303	2.3	819	45	<i>L</i> 6 <i>L</i>	18	062	17
08JX02-2@8	301	7	0.024	0.07	0.06647	0.9	1.213	2.4	0.1323	2.3	821	19	807	14	801	17
08JX02-2@9	286	9	0.022	0.01	0.06682	0.9	1.202	2.4	0.1304	2.3	832	18	801	14	062	17
08JX02-2@10	190	5	0.029	0.18	0.06451	1.5	1.164	2.7	0.1309	2.3	758	32	784	15	793	17
08JX02-2@11	164	4	0.025	0.19	0.06438	1.5	1.180	2.7	0.1329	2.3	754	32	161	15	804	17

9
3 0.018 0.02 0.067
7 0.023 0.21 0.06655
7 0.032 0.08 0.06619
3 0.023 0.00 0.06490
65 0.040 0.18 0.06646
12 0.057 0.00 0.0532
1 0.036 0.00 0.0544
1 0.035 0.38 0.0555
8 0.043 0.11 0.0539
1 0.034 0.00 0.0543
11 0.055 0.14 0.0562
7 0.056 0.23 0.0534
12 0.057 0.00 0.0547
1 0.030 0.00 0.0523
1 0.031 0.00 0.05584
1 0.023 0.64 0.05824
6 0.036 0.15 0.0555
1 0.023 0.00 0.0533
10 0.030 0.00 0.05454
8 0.018 0.00 0.05030
11 0.019 0.33 0.04299
11 0.047 0.34 0.05309
27 0.028 0.07 0.0463
6 0.021 0.25 0.0486
44 0.047 0.00 0.04573

SK10-2@7	117	Э	0.022	0.59	0.04551	10	0.03219	Π	0.005129	3.9	·		32.2	3.4	33.0	1.3
SK10-2@8	1094	LL	0.071	0.07	0.04737	2.4	0.03583	4.3	0.005486	3.6	ı	ı	35.7	1.5	35.3	1.3
SK10-2@9	128	2	0.014	1.54	0.04791	28	0.03347	29	0.005067	3.8			33.4	9.5	32.6	1.2
SK10-2@10	267	4	0.014	0.71	0.04700	7.1	0.03162	8.0	0.004879	3.6		·	31.6	2.5	31.4	1.1
SK10-2@11	142	2	0.016	0.82	0.04262	12	0.02997	12	0.005099	3.8	ı	·	30.0	3.6	32.8	1.2
SK10-2@12	25	С	0.109	0.92	0.05321	21	0.03706	22	0.005051	4.4			36.9	7.9	32.5	1.4
SK10-2@13	126	2	0.019	0.92	0.03993	13	0.02755	13	0.005003	3.7	ı	·	27.6	3.6	32.2	1.2
SK10-2@14	495	19	0.038	0.00	0.04934	3.2	0.03638	4.9	0.005347	3.7	·	·	36.3	1.8	34.4	1.3
SK10-2@15	209	4	0.018	0.29	0.04530	9.2	0.03273	9.9	0.005240	3.8	ı	ı	32.7	3.2	33.7	1.3
SK10-2@16	376	5	0.014	0.20	0.04847	4.4	0.03316	5.8	0.004962	3.7			33.1	1.9	31.9	1.2
SK10-2@17	126	2	0.017	0.53	0.04461	12	0.03123	12	0.005078	3.7	ı	·	31.2	3.8	32.7	1.2
SK10-2@18	285	5	0.018	0.00	0.04918	4.3	0.03464	5.7	0.005109	3.7	ı	ı	34.6	1.9	32.8	1.2
SK10-2@19	3724	302	0.081	0.02	0.04723	1.3	0.03945	3.8	0.006058	3.6	ı	ı	39.3	1.5	38.9	1.4
SK10-2@20	158	ю	0.021	0.50	0.04208	10	0.02834	11	0.004884	3.8	ı	ı	28.4	3.1	31.4	1.2
SK10-2@21	209	4	0.017	0.00	0.04189	5.1	0.02859	6.3	0.004951	3.7	ı	ı	28.6	1.8	31.8	1.2
SK10-2@22	163	7	0.044	0.00	0.04769	5.1	0.03495	6.3	0.005315	3.7	ı	ı	34.9	2.2	34.2	1.3
SK10-2@23	534	18	0.033	0.15	0.04606	4.2	0.03394	5.6	0.005344	3.6	ı	ı	33.9	1.9	34.4	1.2
SK10-2@24	421	7	0.016	0.00	0.04648	3.7	0.03322	5.2	0.005184	3.6			33.2	1.7	33.3	1.2
SK10-2@25	161	С	0.018	0.00	0.04696	6.3	0.03200	7.3	0.004943	3.6			32.0	2.3	31.8	1.2
SK10-2@26	254	9	0.022	0.63	0.04342	8.3	0.02909	9.1	0.004859	3.7	ı	ı	29.1	2.6	31.2	1.1
Session 3																
LGXL-01																
LGXL01@1	2911	201	0.069	0.00	0.05123	0.9	0.2625	3.2	0.03716	3.1	251	20	236.6	6.9	235.2	7.2
LGXL01@2	546	8	0.015	0.06	0.04950	1.6	0.2261	3.5	0.03313	3.1	171	38	207.0	6.6	210.1	6.5
LGXL01@3	489	4	0.008	0.00	0.04928	2.0	0.2177	3.7	0.03204	3.1	161	46	200.0	6.7	203.3	6.3
LGXL01@4	2597	296	0.114	0.02	0.04928	0.8	0.2610	3.2	0.03841	3.1	161	17	235.4	6.8	243.0	7.5
LGXL01@5	676	6	0.013	0.00	0.05104	1.4	0.2230	3.4	0.03169	3.1	243	32	204.4	6.4	201.1	6.2
LGXL01@6	217	7	0.007	0.00	0.05046	2.5	0.2127	4.0	0.03057	3.1	216	57	195.8	7.1	194.1	6.0
LGXL01@7	2429	23	0.009	0.00	0.04997	0.9	0.2274	3.2	0.03300	3.1	194	20	208.0	6.1	209.3	6.4
LGXL01@8	392	5	0.012	0.00	0.04987	2.0	0.2139	3.7	0.03111	3.1	189	46	196.8	6.7	197.5	6.1

trometry	
of Analytical Atomic Spec	ociety of Chemistry 2010
SI) for Journal	The Roval Sc
/ Material (E	s iournal is C
Supplementary	Thi

LGXL01@9	1195	77	0.065	0.00	0.04978	1.2	0.2570	3.3	0.03744	3.1	185	27	232.2	7.0	236.9	7.3
LGXL01@10	292	ю	0.009	0.00	0.05033	2.1	0.2024	3.7	0.02917	3.1	210	47	187.2	6.4	185.4	5.7
LGXL01@11	1350	20	0.014	0.01	0.04932	1.2	0.2340	3.4	0.03440	3.1	163	29	213.5	6.5	218.0	6.7
LGXL01@12	412	4	0.010	0.00	0.05146	1.8	0.2182	3.6	0.03074	3.1	262	40	200.4	9.9	195.2	6.0
LGXL01@13	283	б	0.010	0.00	0.04950	2.4	0.2273	3.9	0.03330	3.1	172	54	207.9	7.4	211.2	6.5
LGXL01@14	268	б	0.011	0.00	0.04943	2.2	0.2030	3.8	0.02978	3.2	168	50	187.6	9.9	189.2	5.9
LGXL01@15	671	4	0.006	0.03	0.04910	1.8	0.2133	3.6	0.03151	3.1	152	41	196.3	6.4	200.0	6.2
LGXL01@16	264	7	0.009	0.00	0.04948	2.6	0.1979	4.1	0.02901	3.2	171	60	183.4	6.9	184.4	5.7
LGXL01@17	452	4	0.008	0.00	0.04829	2.3	0.2038	3.9	0.03061	3.1	113	53	188.3	6.7	194.3	6.0
LGXL01@18	198	7	0.011	0.00	0.04946	2.6	0.2012	4.1	0.02950	3.2	170	59	186.1	7.0	187.4	5.9
$\frac{\&}{f_{206}}$ is the percent	age of con	1mon ²⁽	⁰⁶ Pb in tc	ital ²⁰⁶ P	b.											

Table 3 Zircon U-Pb data of LGXL-01 by mono-collector mode

(0.9) <	Ē	$\frac{\text{Th}}{\text{11}} f_{206}^{\&} \stackrel{2}{\approx} \frac{2}{2}$	²⁰⁷ Pb ²⁰⁶ Ph	±1σ (%)	$\frac{^{207}\text{Pb}}{^{235}\text{IJ}}$	±1σ (%)	$\frac{^{206}\text{Pb}}{^{238}\text{U}}$	±1σ (%)	t _{207/206} (Ma)	$\pm l\sigma$	t _{207/235} (Ma)	±lσ	t _{206/238} (Ma)	±1σ
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.4 (%) N	гD		(%)	D	(%)	D	(%)	(Ma)		(Ma)		(Ma)	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.86 0.00 0.0502	0502	2	2.7	0.2126	3.1	0.03069	1.5	206	61	195.7	5.5	194.9	2.9
1.8 0.2029 2.5 0.03011 1.5 141 46 187.6 4.3 191.2 2.9 1.5 0.2118 2.3 0.03045 1.6 216 39 195.1 4.2 193.4 31.1 2.4 0.2091 2.9 0.03043 1.6 187 57 192.8 5.2 193.3 3.0 3.1 0.20131 4.1 0.02995 1.5 268 86 196.2 7.4 190.3 2.9 3.5 0.2036 4.3 0.03061 1.6 178 91 193.1 7.6 194.3 2.9 3.6 0.2095 4.3 0.03065 1.5 207 66 195.6 5.9 194.6 2.9 2.7 0.2124 3.3 0.03065 1.5 207 66 195.6 5.9 194.6 2.9 2.1 0.2071 2.7 0.03067 1.6 193 7.6 194.6 2.9 2.1 0.2071 2.7 0.03067 1.6 193.7 7.6 194.6 2.9 2.1 0.2071 2.7 0.03067 1.6 193.7 7.7 199.7 3.1 2.6 0.2019 4.3 0.03016 1.6 193.7 7.7 199.7 3.1 2.6 0.2019 3.1 0.03114 1.5 200 199.6 7.2 197.6 3.1 2.6 0.2119 1.6 0.03114 1.5 <	2.01 0.00 0.0482	0482	L	2.4	0.2058	2.9	0.03091	1.5	113	57	190.0	5.0	196.2	2.9
1.5 0.2118 2.3 0.03045 1.6 216 39 195.1 4.2 193.4 3.1 2.4 0.2091 2.9 0.03043 1.6 187 57 192.8 5.2 193.3 3.0 3.1 0.2131 4.1 0.02995 1.5 268 86 196.2 7.4 190.3 2.9 3.5 0.2036 4.3 0.03057 1.5 114 93 188.2 7.5 194.1 2.9 3.6 0.2095 4.3 0.03061 1.6 178 91 193.1 7.6 194.3 2.9 2.7 0.20124 3.3 0.03065 1.5 207 66 195.6 5.9 194.6 2.9 2.1 0.2071 2.7 0.03007 1.6 193 51 191.1 4.8 191.0 2.9 2.1 0.2071 2.7 0.03061 1.6 193 51 191.1 4.8 191.0 2.9 2.6 0.21094 4.3 0.03105 1.6 184 91 199.2 8.9 199.1 3.1 2.6 0.2119 3.1 0.03112 1.6 184 91 199.6 7.7 193.7 3.1 2.6 0.2119 3.1 0.03114 1.5 206 52 199.6 7.2 197.7 3.1 2.7 0.2119 2.0 0.03114 1.5 206 52 192.6 7.2	1.79 0.09 0.048	048	87	1.8	0.2029	2.5	0.03011	1.5	141	46	187.6	4.3	191.2	2.9
24 0.2091 2.9 0.03043 1.6 187 57 192.8 5.2 193.3 3.0 3.1 0.2131 4.1 0.02995 1.5 268 86 196.2 7.4 190.3 2.9 3.5 0.2036 4.3 0.03057 1.5 114 93 188.2 7.5 194.1 2.9 3.6 0.2095 4.3 0.03057 1.5 114 93 188.2 7.5 194.1 2.9 2.7 0.2015 4.3 0.03065 1.5 207 66 195.6 5.9 194.6 2.9 2.1 0.2071 2.7 0.03077 1.6 193 51 191.1 4.8 191.0 2.9 2.1 0.2071 2.7 0.03077 1.6 193 51 191.1 4.8 191.0 2.9 2.1 0.2071 2.7 0.03077 1.6 193 51 191.1 4.8 191.0 2.9 2.6 0.2019 4.3 0.03112 1.6 184 91 199.2 89 191.0 2.9 3.6 0.2094 4.3 0.03112 1.6 184 91 199.2 899.1 197.6 3.1 2.6 0.2119 3.1 0.03114 1.5 2206 52 192.6 7.2 197.7 3.0 2.7 0.2123 2.0 0.03114 1.5 200 199.6 7.2 197	0.96 0.11 0.050	020	46	1.5	0.2118	2.3	0.03045	1.6	216	39	195.1	4.2	193.4	3.1
3.1 0.2131 4.1 0.02995 1.5 268 86 196.2 7.4 190.3 2.9 3.5 0.2036 4.3 0.03057 1.5 114 93 188.2 7.5 194.1 2.9 3.6 0.2095 4.3 0.03061 1.6 178 91 193.1 7.6 194.3 3.0 2.7 0.2124 3.3 0.03065 1.5 207 66 195.6 5.9 194.6 2.9 2.1 0.2071 2.7 0.03067 1.6 193 51 191.1 4.8 191.0 2.9 2.1 0.2071 2.7 0.03138 1.5 200 104 199.2 8.9 191.0 2.9 4.1 0.2167 4.9 0.03138 1.5 200 104 199.2 8.9 191.0 2.9 3.6 0.2094 4.3 0.03138 1.5 200 104 199.2 8.9 191.0 2.9 3.6 0.2094 4.3 0.03112 1.6 184 91 199.2 8.9 197.6 3.1 2.6 0.2119 3.1 0.03114 1.5 206 52 192.6 4.8 191.6 2.9 3.7 0.2172 4.0 0.03114 1.5 226 83 199.6 7.2 197.6 3.1 2.8 0.2013 3.3 0.03114 1.5 218 $0.92.9$ 5.8	0.90 0.07 0.049	045	83	2.4	0.2091	2.9	0.03043	1.6	187	57	192.8	5.2	193.3	3.0
3.5 0.2036 4.3 0.03057 1.5 114 93 188.2 7.5 194.1 2.9 3.6 0.2095 4.3 0.03061 1.6 178 91 193.1 7.6 194.6 2.9 2.7 0.2124 3.3 0.03065 1.5 207 66 195.6 5.9 194.6 2.9 2.1 0.2071 2.7 0.03007 1.6 193 51 191.1 4.8 191.0 2.9 2.1 0.2071 2.7 0.03007 1.6 193 51 191.1 4.8 191.0 2.9 2.1 0.2071 2.7 0.03051 1.6 184 91 199.2 8.9 199.0 2.9 3.6 0.2094 4.3 0.03051 1.6 184 91 193.0 7.7 193.7 3.1 2.6 0.2119 3.1 0.03112 1.6 184 91 193.0 7.7 197.6 3.1 1.9 0.2089 2.7 0.03114 1.5 206 52 192.6 4.8 197.6 2.9 3.7 0.2172 4.0 0.03114 1.5 222 83 199.6 7.2 197.6 2.9 1.2 0.2183 3.0 0.03114 1.5 222 83 199.6 7.2 197.6 2.9 2.8 0.2033 3.3 0.03114 1.5 218 29 197.6 5.9 <	1.43 0.20 0.0516	0516	51	3.1	0.2131	4.1	0.02995	1.5	268	86	196.2	7.4	190.3	2.9
3.6 0.2095 4.3 0.03061 1.6 178 91 193.1 7.6 194.3 3.0 2.7 0.2124 3.3 0.03065 1.5 207 66 195.6 5.9 194.6 2.9 2.1 0.2071 2.7 0.03007 1.6 193 51 191.11 4.8 191.0 2.9 4.1 0.2167 4.9 0.03138 1.5 200 104 199.2 8.9 199.1 3.0 3.6 0.2094 4.3 0.03051 1.6 184 91 193.0 7.7 193.7 3.1 2.6 0.2119 3.1 0.03112 1.6 184 91 193.0 7.7 193.7 3.1 2.6 0.2119 3.1 0.03112 1.6 184 91 193.0 7.7 193.7 3.1 2.6 0.2119 3.1 0.03114 1.5 206 52 192.6 4.8 191.6 2.9 3.7 0.2172 4.0 0.03114 1.5 2206 52 192.6 7.2 197.6 3.1 1.2 0.2153 2.0 0.03114 1.5 220 98.9 5.8 197.6 3.1 2.8 0.2093 3.3 0.03114 1.5 212 60 20.5 5.5 197.6 3.1 2.8 0.2183 3.0 0.03144 1.5 212 60 200.5 5.5 197	1.14 0.24 0.048	048	32	3.5	0.2036	4.3	0.03057	1.5	114	93	188.2	7.5	194.1	2.9
2.7 0.2124 3.3 0.03065 1.5 207 66 195.6 5.9 194.6 2.9 2.1 0.2071 2.7 0.03007 1.6 193 51 191.1 4.8 191.0 2.9 4.1 0.2167 4.9 0.03138 1.5 200 104 199.2 8.9 199.1 3.0 3.6 0.2094 4.3 0.03051 1.6 184 91 193.0 7.7 193.7 3.1 2.6 0.2119 3.1 0.03112 1.6 184 91 193.0 7.7 193.7 3.1 2.6 0.2094 4.3 0.03112 1.6 184 91 193.0 7.7 193.7 3.1 2.6 0.2119 3.1 0.03112 1.6 166 60 195.1 5.4 197.6 3.1 1.9 0.2089 2.7 0.03114 1.5 2206 52 199.6 7.2 197.6 2.9 3.7 0.2172 4.0 0.03114 1.5 2206 52 199.6 7.2 197.6 2.9 2.8 0.2093 3.3 0.03114 1.5 2206 5.8 199.6 7.2 197.6 3.1 2.8 0.2093 3.3 0.031144 1.5 212 60 200.5 5.5 197.6 3.1 2.8 0.2183 3.0 0.03144 1.5 212 60 200.5	0.79 0.15 0.0496	0496	5	3.6	0.2095	4.3	0.03061	1.6	178	91	193.1	7.6	194.3	3.0
2.1 0.2071 2.7 0.03007 1.6 193 51 191.1 4.8 191.0 2.9 4.1 0.2167 4.9 0.03138 1.5 200 104 199.2 8.9 199.1 3.0 3.6 0.2094 4.3 0.03051 1.6 184 91 199.2 8.9 199.1 3.0 2.6 0.2019 3.1 0.03112 1.6 166 60 195.1 5.4 197.6 3.1 1.9 0.2089 2.7 0.03016 1.5 206 52 192.6 4.8 191.6 2.9 3.7 0.2172 4.0 0.03114 1.5 2206 52 199.6 7.2 197.7 3.0 1.2 0.2172 4.0 0.03114 1.5 2206 52 199.6 7.2 197.7 3.0 1.2 0.2153 2.0 0.03114 1.5 187 29 198.0 3.5 197.6 3.1 2.8 0.2093 3.3 0.03114 1.6 136 66 192.9 5.8 197.6 3.1 2.8 0.2183 3.0 0.03144 1.5 212 60 200.5 5.5 199.5 3.1	1.05 0.08 0.0502	0502	9	2.7	0.2124	3.3	0.03065	1.5	207	99	195.6	5.9	194.6	2.9
4.1 0.2167 4.9 0.03138 1.5 200 104 199.2 8.9 199.1 3.0 3.6 0.2094 4.3 0.03051 1.6 184 91 193.0 7.7 193.7 3.1 2.6 0.2119 3.1 0.03112 1.6 166 60 195.1 5.4 197.6 3.1 1.9 0.2089 2.7 0.03016 1.5 206 52 192.6 4.8 191.6 2.9 3.7 0.2172 4.0 0.03114 1.5 2206 83 199.6 7.2 197.7 3.0 1.2 0.2153 2.0 0.03114 1.5 222 83 199.6 7.2 197.7 3.0 2.8 0.2093 3.3 0.03114 1.5 187 29 198.0 3.5 197.6 3.1 2.8 0.2093 3.3 0.03114 1.6 136 66 192.9 5.8 197.6 3.1 2.8 0.2093 3.0 0.031144 1.5 212 60 200.5 5.5 197.6 3.1	0.99 0.05 0.0499	0499	2	2.1	0.2071	2.7	0.03007	1.6	193	51	191.1	4.8	191.0	2.9
3.6 0.2094 4.3 0.03051 1.6 184 91 193.0 7.7 193.7 3.1 2.6 0.2119 3.1 0.03112 1.6 166 60 195.1 5.4 197.6 3.1 1.9 0.2089 2.7 0.03016 1.5 206 52 192.6 4.8 191.6 2.9 3.7 0.2172 4.0 0.03114 1.5 222 83 199.6 7.2 197.7 3.0 1.2 0.2153 2.0 0.03134 1.5 187 29 198.0 3.5 197.7 3.0 2.8 0.2093 3.3 0.03114 1.6 136 66 192.9 5.8 197.6 3.1 2.8 0.2013 3.0 0.03114 1.5 212 60 200.5 5.5 197.6 3.1 2.8 0.2013 3.0 0.031144 1.5 212 60 200.5 5.5 197.6 3.1	0.87 0.18 0.0501	0501	-	4.1	0.2167	4.9	0.03138	1.5	200	104	199.2	8.9	199.1	3.0
2.6 0.2119 3.1 0.03112 1.6 166 60 195.1 5.4 197.6 3.1 1.9 0.2089 2.7 0.03016 1.5 206 52 192.6 4.8 191.6 2.9 3.7 0.2172 4.0 0.03114 1.5 222 83 199.6 7.2 197.7 3.0 1.2 0.2153 2.0 0.03134 1.5 187 29 198.0 3.5 198.9 2.9 2.8 0.2093 3.3 0.03114 1.6 136 66 192.9 5.8 197.6 3.1 2.8 0.2093 3.3 0.03114 1.5 212 60 200.5 5.5 199.5 3.1	0.87 0.15 0.049	049′	77	3.6	0.2094	4.3	0.03051	1.6	184	91	193.0	7.7	193.7	3.1
1.9 0.2089 2.7 0.03016 1.5 206 52 192.6 4.8 191.6 2.9 3.7 0.2172 4.0 0.03114 1.5 222 83 199.6 7.2 197.7 3.0 1.2 0.2153 2.0 0.03134 1.5 187 29 198.0 3.5 198.9 2.9 2.8 0.2093 3.3 0.03114 1.6 136 66 192.9 5.8 197.6 3.1 2.8 0.2093 3.3 0.03114 1.6 136 66 192.9 5.8 197.6 3.1 2.5 0.2183 3.0 0.03144 1.5 212 60 200.5 5.5 199.5 3.0	1.03 0.00 0.0493	0493	9	2.6	0.2119	3.1	0.03112	1.6	166	60	195.1	5.4	197.6	3.1
3.7 0.2172 4.0 0.03114 1.5 222 83 199.6 7.2 197.7 3.0 1.2 0.2153 2.0 0.03134 1.5 187 29 198.0 3.5 198.9 2.9 2.8 0.2093 3.3 0.03114 1.6 136 66 192.9 5.8 197.6 3.1 2.5 0.2183 3.0 0.03144 1.5 212 60 200.5 5.5 199.5 3.0	1.62 0.14 0.0502	0502	4	1.9	0.2089	2.7	0.03016	1.5	206	52	192.6	4.8	191.6	2.9
1.2 0.2153 2.0 0.03134 1.5 187 29 198.0 3.5 198.9 2.9 2.8 0.2093 3.3 0.03114 1.6 136 66 192.9 5.8 197.6 3.1 2.5 0.2183 3.0 0.03144 1.5 212 60 200.5 5.5 199.5 3.0	1.22 0.00 0.050:	050	58	3.7	0.2172	4.0	0.03114	1.5	222	83	199.6	7.2	197.7	3.0
2.8 0.2093 3.3 0.03114 1.6 136 66 192.9 5.8 197.6 3.1 2.5 0.2183 3.0 0.03144 1.5 212 60 200.5 5.5 199.5 3.0	3.97 0.03 0.0498	0498	ŝ	1.2	0.2153	2.0	0.03134	1.5	187	29	198.0	3.5	198.9	2.9
2.5 0.2183 3.0 0.03144 1.5 212 60 200.5 5.5 199.5 3.0	0.72 0.04 0.0487	0487	'5	2.8	0.2093	3.3	0.03114	1.6	136	99	192.9	5.8	197.6	3.1
	1.12 0.05 0.050	050	38	2.5	0.2183	3.0	0.03144	1.5	212	60	200.5	5.5	199.5	3.0

Fig. 2 (A) Pb-Pb dating results of FC 4b baddeleyite by multi-collection mode and single-collection mode; (B) U-Pb dating results of FC-4b baddeleyite. Error bars, error ellipses and weighted average ages are at 2SE level.

Fig. 3 (A) Pb-Pb dating results of 05JX02 baddeleyite by multi-collection mode and single-collection mode; (B) U-Pb dating results of 05JX02 baddeleyite. Error bars, error ellipses and weighted average ages are at 2SE level.

Fig. 4 (A) Pb-Pb dating results of Kovdor baddeleyite by multi-collection mode and single-collection mode; (B) U-Pb dating results of Kovdor baddeleyite. Error bars, error ellipses and weighted average ages are at 2SE level.

Fig. 5 U-Pb dating results of LGXL-01 zircon. Error ellipses and weighted average ages are at 2SE level.

Fig. 6 U-Pb dating results of SK10-2 baddeleyite. Error ellipses and weighted average ages are at 2SE level.

