		Calibration Standard								
		Blank	А	В	С	D	Е	F	G	
Concentration \pm Standard Deviation (ug g ⁻¹)	²⁴ Mg	339.48	349.01	354.32	363.75	388.79	409.38	417.33	417.65	
		± 15.21	± 15.78	± 10.95	± 11.96	± 9.94	± 9.6	± 10.01	± 6.27	
	⁵⁵ Mn	0.15	4.52	1.02	5.32	10.51	17.16	23.80	26.86	
		± 0.03	± 0.18	± 0.03	± 0.17	± 0.37	± 0.4	± 0.35	± 0.69	
	⁵⁶ Fe	4.79	9.94	27.86	50.61	88.38	129.30	162.42	187.98	
		± 0.69	± 0.48	± 2.17	± 1.79	± 2.45	± 4.36	± 3.62	± 6.12	
	⁵⁷ Fe	4.61	9.14	26.78	48.95	87.09	128.32	160.64	186.10	
		± 0.80	± 0.41	± 2.24	± 1.63	± 3.00	± 4.57	± 3.01	± 5.96	
	⁵⁹ Co	0.00	1.71	10.28	19.51	44.13	73.73	94.87	100.20	
		± 0.03	± 0.11	± 0.36	± 0.65	± 2.16	± 1.55	± 1.544	± 5.57	
	⁶⁰ Ni	0.00	2.34	10.20	18.01	40.92	65.38	84.72	91.56	
		± 0.11	± 0.94	± 0.67	± 0.90	± 1.66	± 1.17	± 1.04	± 3.92	
	⁶³ Cu	0.19	2.20	7.40	14.22	25.79	59.07	67.65	80.32	
		± 0.12	± 0.13	± 0.24	± 0.43	± 1.05	± 2.36	± 0.87	± 1.85	
	⁶⁶ Zn	4.55	11.10	17.89	33.14	61.48	93.19	115.66	130.04	
		± 1.04	± 0.35	± 0.46	± 1.06	± 1.24	± 2.55	± 1.43	± 4.95	
	⁸⁵ Rb	6.75	9.46	19.74	32.58	58.41	93.87	123.64	140.08	
		± 0.14	± 0.19	± 0.46	± 0.98	± 2.66	± 1.59	± 2.47	± 4.22	
	⁸⁸ Sr	0.00	1.69	3.41	9.14	13.00	19.34	30.35	33.26	
		± 0.01	± 0.07	± 0.12	± 0.31	± 0.78	±0.42	± 0.5	± 0.58	

Supplementary Table 1: Concentrations (± standard deviation) of each isotope in prepared tissue standards

Supplementary Table 2: Calculated minimum dwell times for each element in the prepared chicken standards

<i>m/z</i> ,	Selected minimum MS Dwell Times (seconds)				
13	0.010				
24	0.005				
31	0.001				
44	0.005				
55	0.005				
56	0.015				
57	0.090*				
59	0.010				
60	0.300*				
63	0.020				
66	0.005				
85	0.001				
88	0.005				

* Did not pass the limiting signal and are therefore not quantifiable, but are above limit of detection

Supplementary Figure 1: Washout times - time taken (in data points) for total ion count (TIC) to reach background levels after tissue ablation using increasing scan speeds

Supplementary Figure 2: Comparison of normalised signal intensities for the total ion count (TIC) across laser spot diameters and increasing scan speed

Supplementary Figure 3: Demonstration of the use of increased v_l while maintaining image dimensions equivalent to the original tissue section. $x_s = 30 \mu m$, $t_{sc} = 0.2372$ seconds $= v_l$ of $127 \mu m s^{-1}$