2

Supporting Information

3 Anastasia Albert, Christine Brauckmann, Franziska Blaske, Michael Sperling, Carsten Engelhard and

4

Uwe Karst

Speciation Analysis of the Antirheumatic Agent Auranofin and its Thiol Adducts by LC/ESI-MS and LC/ICP-MS

7

8 Supporting information is presented on LC/ESI-Orbitrap-MS, ESI-IT-MS and LC/ICP-MS experimental 9 conditions for the analysis of Auranofin, glutathione (GSH), and human serum albumin (HAS). 10 Additional information on the fragmentation experiments of Auranofin with mass spectra and 11 fragmentation pathway is provided.

- 12
- 13
- 14
- 15
- 16

Table S-1. ESI-Orbitrap-MS parameters for the analysis of Auranofin, GSH and HAS.

A	nalyte	Auranofin, GSH	Auranofin, GSH	нел
Parameters		positive ion mode	negative ion mode	IISA
Scan Parameters				
Scan Range		100-1500	100-1500	750-3000
Fragmentation		HCD Gas On	HCD Gas On	HCD Gas On
Resolution		High	High	Medium
Polarity		Positive	Negative	Positive
Microscans		1	1	5
Lock Masses		Off	Off	Off
AGC Target		Balanced	Balanced	Balanced
Maximum Injection T	ime	10 ms	10 ms	10 ms
ESI Source				
Sheath Gas Flow Rate		40	40	40
Aux Gas Flow Rate		15	15	15
Sweep Gas Flow Rate		0	0	0
Spray Voltage (kV)		3.5	3.0	3.5
Capillary Temperature	e (°C)	350	350	350
Capillary Voltage (V)		37.50	-57.50	37.50
Tube Lens Voltage (V)	115.00	-190.00	190.00
Skimmer Voltage (V)		22.00	-34.00	44.00

- ___

Table S-2. ESI-IT-MS parameters for the fragmentation experiments of Auranofin.

	Ion Source	
	Tune Mode	smart
	Nebulizer Pressure [psi]	10
	Drying Gas [L/min]	4
	Dryingt Temp. [°C]	330
	Ion Transfer	
	Target Mass [m/z]	679 (+), 923 (-)
	Compound Stability [%]	100
	Trap Drive Level [%]	100
	Optimize	wide
	Polarity	positive, negative
	Trap ICC	
	Target	15000
	Max. Accu T [ms]	10
29		
30		
50		
31		
22		
32		
33		
34		
25		
33		
36		
37		
28		
30		
39		
40		
41		
41		
42		
43		

Nebilizer Type	PFA µflow
Sampling Gas [L/min]	0.780
Oxygen Flow [L/min]	0.100
ICP RF Power [W]	1500
Scan Type	E-Scan
Isotope	Au197
Resolution	Low
Mass Window	10
Samples per Peak	200
Sample Time	0.01
Integration Window	10
Acquisition Points	10

Table S-3. LC/ICP-MS parameters for the analysis of Auranofin, GSH and HSA.

- 64 **Figure S-1.** Fragmentation experiment of the Auranofin precursor ion at m/z 586 by ESI-IT-MS. Mass
- 65 spectra are shown of the fragmented precursor ion at m/z 586. See table S-1 for structural information.

Table S-4. Fragmentation pathway of the Auranofin precursor ion at m/z 586.

Experiment	Structure and m/z	
MS^1	$AcO \xrightarrow{OAc} [S \cdot Au \cdot CN]^{-}$ $AcO OAc$ 586	
●m/z = 586 ↓ o	406 OAc AcO [SAuCN] 466 AcO OAc 526	

- . .

Figure S-2. Fragmentation experiment of the Auranofin precursor ion at m/z 679 by ESI-IT-MS. Mass spectra are shown of the fragmented a) precursor ion at m/z 679, b) fragment ion at m/z 499 and c) fragment ion at m/z 457. See table S-5 for structural information.

Table S-5. Fragmentation pathway of the Auranofin precursor ion at m/z 679.

- 11/

Figure S-3. Fragmentation experiment of the Auranofin precursor ion at m/z 923 by ESI-IT-MS. Mass spectra are shown of fragmented a) precursor ion at m/z 923 and b) fragment ion at m/z 619. See table S-6 for structural information.

Table S-6. Fragmentation pathway of the Auranofin precursor ion at m/z 923.

Figure S-4. Fragmentation experiment of the Auranofin precursor ion at m/z 993 by ESI-IT-MS. Mass spectra are shown of fragmented a) precursor ion at m/z 993, b) fragment ion at m/z 663 and c) fragment ion at m/z 433. See table S-7 for structural information.

- - -

167 **Table S-7.** Fragmentation pathway of the Auranofin precursor ion at m/z 993.

168