Electronic Supplementary Information (ESI)

In situ ultrasound-assisted synthesis of Fe_3O_4 nanoparticles with simultaneous ion co-precipitation for multielemental analysis of natural waters by total reflection X-ray fluorescence spectrometry

Vanesa Romero, Isabel Costas-Mora, Isela Lavilla and Carlos Bendicho*

Departamento de Química Analítica y Alimentaria, Área de Química Analítica; Facultad de Química, Universidad de Vigo, Campus As Lagoas-Marcosende s/n, 36310 Vigo, Spain. E-mail: <u>bendicho@uvigo.es</u>; Fax: +34-986-812556; Tel: +34-986-812281

Contents

The ESI contains three additional Tables:

 Table S1. Adjustment of experimental data to Berthelot-Nernst law and Doerner

 Hoskins law

Table S2. Study of possible interferents in natural waters on the application of the *in situ* UAMS-SIC approach combined with TXRF for multielemental analysis

Table S3. Values of the ion metal contents and recoveries obtained by applying the *insitu* UAMS-SIC approach combined with TXRF for different natural water matrices

Electronic Supplementary Material (ESI) for Journal of Analytical Atomic Spectrometry This journal is C The Royal Society of Chemistry 2013

Table S1. Adjustment of experimental data to Berthelot-Nernst law and Doerner-Hoskins law

	Berthelot-Nernst	aw	Doerner-Hoskins law			
Analyte	Equation for linear calibration	Correlation coefficient	Equation for linear calibration	Correlation Coefficient		
Cu	y = 0. 5991 x - 2E-05	0.9312	y = 0.5833 x + 0.0135	0.9232		
Zn	y = 2.4713 x - 0.0002	0.9975	y = 0.6876 x - 0.0138	0.9912		
Ge	y = 35.12 x + 0.0001	0.9907	y = 0.7769 x - 0.0106	0.9824		
As	y = 2.6019 x + 3E-05	0.9913	y = 1.058 x - 0.0938	0.9863		
Se	y = 1.709 x - 0.0001	0.8326	y = 0.7255 x - 0.0271	0.9568		
Re	y = 0.9968 x - 3E-07	0.9917	y = 1.3417 x + 0.0960	0.9574		
Au	y = 1.7626 x - 0.0002	0.9685	y = 0.9315 x - 0.0652	0.9516		
Hg	y = 5.3764 x + 2E-05	0.9987	y = 1.1054 x - 0.0719	0.9593		
Tl	y = 1.0004 x + 3E-05	0.9817	y = 0.7973 x - 0.0962	0.9061		
Bi	y = 1.1245 x + 3E-05	0.9927	y = 0.9885 x - 0.0384	0.9696		
Pb	y = 1.0862 x + 9E-05	0.9957	y = 1.1673 x - 0.0774	0.9820		

Electronic Supplementary Material (ESI) for Journal of Analytical Atomic Spectrometry This journal is The Royal Society of Chemistry 2013

Table S2. Study of possible interferents in natural waters on the application of the *in situ* UAMS-SIC approach combined with TXRF for multielemental analysis

Interferent	Studied level (mg L ⁻¹)	Recoveries (%)				
	100	95-104 (except Se, recovery: 65)				
NaCl	1000	100-107 (except Se, recovery: 68)				
	20000	96-107 (except Se, recovery: 62)				
	50000	68-76 (except Se, recovery: 34)				
	100	101-103 (except Se, recovery: 63)				
N- 60	1000	100-105 (except Se, recovery: 66)				
Na_2SO_4	20000	102-106 (except Se, recovery: 64)				
	50000	64-71 (except Se, recovery: 42)				
	5	98-108 (except Se, recovery: 68)				
	20	101-107 (except Se, recovery: 63)				
MgCl ₂	100	99-107 (except Se, recovery: 61)				
	200	51-64 (except Se, recovery: 48)				
	5	99-108 (except Se, recovery: 65)				
	20	100-105 (except Se, recovery: 64)				
KH ₂ PO ₄	100	101-108 (except Se, recovery: 64)				
	200	99-105 (except Se, recovery: 68)				
	50	99-107 (except Se, recovery: 63)				
	100	100-108 (except Se, recovery: 64)				
CaSO ₄	500	100-106 (except Se, recovery: 65)				
	2000	100-107 (except Se, recovery: 64)				
	50	100-103 (except Se, recovery: 64)				
	100	97-105 (except Se, recovery: 66)				
Na ₂ CO ₃	500	101-107 (except Se, recovery: 67)				
	5000	72-61 (except Se, recovery: 39)				
	200	95-104 (except Se, recovery: 63)				
KNO ₃	5000	100-104 (except Se, recovery: 65)				
	12000	100-104 (except Se, recovery: 68)				
	1	99-108 (except Se, recovery: 64)				
Humic acid	10	99-106 (except Se, recovery: 63)				
	20*					

*For concentrations of humic acid higher than 10 mg L⁻¹, *in situ* UAMS-SIC can not be performed because Fe_3O_4 NPs are stabilized by the humic acid.

Electronic Supplementary Material (ESI) for Journal of Analytical Atomic Spectrometry This journal is C The Royal Society of Chemistry 2013

	Metal	Metal found (μ g L ⁻¹) ± standard deviation, N=3										
Sample	added		(Recovery (%) ± standard deviation, N=3)									
	(µg L ⁻¹)	Cu	Ge	Zn	As	Se	Au	Hg	Tl	Pb	Bi	Re
5	0	0.8 ± 0.1	< LLD	1.5 ± 0.1	< LLD	< LLD	< LLD	< LLD	1.8 ± 0.1	< LLD	< LLD	< LLD
ate	10	9 ± 0.1	10 ± 0.2	10 ± 0.2	10 ± 0.1	< LLD	11 ± 0.1	11 ± 0.1	10 ± 0.2	10 ± 0.1	11 ± 0.2	< LLD
Drinking w	10	(89 ± 1)	(103 ± 2)	(100 ± 2)	(99 ± 1)		(109 ± 1)	(107 ± 1)	(102 ± 3)	(101 ± 1)	(114 ± 3)	
	50	50 ± 0.2	51 ± 1	50 ± 0.4	50 ± 1	31 ± 1	52 ± 1	48 ± 1	49 ± 1	49 ± 1	50 ± 0.5	51 ± 1
		(100 ± 1)	(101 ± 0.3)	(101 ± 1)	(101 ± 1)	(63 ± 1)	(105 ± 2)	(96 ± 1)	(98 ± 1)	(99 ± 2)	(100 ± 1)	(102 ± 1)
	300	299 ± 1	289 ± 1	302 ± 1	292 ± 2	194 ± 2	303 ± 2	285 ± 1	302 ± 1	300 ± 1	295 ± 2	302 ± 2
		(100 ± 1)	(96 ± 1)	(101 ± 1)	(97 ± 1)	(65 ± 1)	(101 ± 3)	(95 ± 1)	(100 ± 1)	(100 ± 1)	(98 ± 1)	(103 ± 1)
	U	2.5 ± 0.6	< LLD	3.2 ± 0.5	< LLD	< LLD	< LLD	< LLD	< LLD	< LLD	< LLD	< LLD
er	10	12 ± 1	10 ± 0.1	10 ± 0.1	10 ± 0.1	< LLD	10 ± 0.2	11 ± 0.1	10 ± 0.1	10 ± 1	10 ± 0.2	< LLD
vat		(95 ± 2)	(104 ± 1)	(100 ± 1)	(101 ± 1)	 4	(97 ± 3)	(107 ± 2)	(101 ± 1)	(97 ± 1)	(98 ± 2)	40 1
p v	50	49 ± 1	51 ± 1	50 ± 0.1	49 ± 0.5	27 ± 1	51 ± 0.4	48 ± 1	50 ± 0.1	51 ± 1	47 ± 0.2	48 ± 1
Ta		(98 ± 2)	(102 ± 1)	(100 ± 0.1)	(98 ± 1)	(54 ± 1)	(102 ± 1)	(96 ± 2)	(99 ± 0.2)	(102 ± 1)	(94 ± 0.5)	(97 ± 1)
_	300	310 ± 1	296 ± 1	306 ± 1	303 ± 2	196 ± 1	296 ± 1	300 ± 1	295 ± 1	302 ± 1	303 ± 0.1	300 ± 1
	0	(103 ± 1)	(99 ± 2)	(102 ± 1) 12 ± 1	$\frac{(101 \pm 1)}{(111 \pm 1)}$	$\frac{(05\pm1)}{(1100)}$	(99 ± 0.4)	(100 ± 1)	(98 ± 1)	(101 ± 1)	(101 ± 0.2)	(100 ± 1.0)
ater	U	0.7 ± 0.1	< LLD	13 ± 1	< LLD	< LLD	< LLD	< LLD	< LLD	< LLD 10 + 0.1	< LLD	< LLD
	$10 \qquad 10 \pm 0.1 \\ (100 \pm 2)$	10 ± 0.1	10 ± 0.1	10 ± 0.3	10 ± 0.2	< LLD	10 ± 0.1	10 ± 0.1	10 ± 0.2	10 ± 0.1	10 ± 0.2	< LLD
l v		(100 ± 2)	(101 ± 1)	(100 ± 3)	(100 ± 2)	20 + 0.4	(100 ± 1)	(101 ± 1)	(102 ± 2)	(101 ± 1)	(105 ± 1)	50 + 0.4
era	50	50 ± 0.5 (101 + 1)	50 ± 0.5	51 ± 1 (102 + 0.1)	50 ± 0.1 (100 ± 0.2)	50 ± 0.4	50 ± 0.1 (100 + 0.3)	50 ± 0.5 (100 ± 0.1)	50 ± 0.2	50 ± 0.4	50 ± 0.4	50 ± 0.4
lin		(101 ± 1) 300 ± 0.4	(100 ± 1) 300 ± 0.5	(102 ± 0.1) 300 ± 0.5	(100 ± 0.3) 301 ± 1	(00 ± 1) 101 ± 0.3	(100 ± 0.3) 301 ± 1	(100 ± 0.1) 300 + 1	(100 ± 0.4) 300 ± 0.1	(101 ± 0.1) 301 ± 0.2	(101 ± 0.1) 301 ± 0.2	(101 ± 1) 300 ± 0.2
N	300	500 ± 0.4	500 ± 0.5 (100 ± 0.2)	500 ± 0.5 (100 ± 1)	301 ± 1 (100 ± 0.2)	191 ± 0.3 (64 ± 1)	501 ± 1 (100 ± 0.2)	500 ± 1 (100 ± 0.3)	500 ± 0.1 (100 ± 0.4)	301 ± 0.2 (100 ± 0.1)	301 ± 0.2 (100 ± 0.1)	500 ± 0.2 (100 ± 0.1)
	0	(100 ± 0.1) 0.30 ± 0.01	(100 ± 0.2)	(100 ± 1) 28 ± 0.5	(100 ± 0.2)		(100 ± 0.2)	(100 ± 0.3)	(100 ± 0.4)			
<u>د</u>	10	10 ± 0.01	10 + 0.1	$\frac{2.0 \pm 0.3}{10 \pm 1.0}$	10 ± 0.2		10 ± 0.2	10 + 0 1	$< 10 \pm 0.2$	10 + 0 1	10 + 0.1	
ate		(100 ± 0.1)	(105 ± 1)	(100 ± 1.0)	(97 ± 2)	< LLD	(99 ± 2)	(101 ± 1)	(105 ± 3)	(100 ± 0.1)	(104 ± 1)	< LLD
M J	-0	50 ± 0.2	50 ± 1	49 ± 1	50 ± 0.2	34 ± 0.2	50 ± 1	49 ± 0.1	50 ± 1	51 ± 0.5	50 ± 0.5	50 ± 0.4
vel	50	(100 ± 1)	(100 ± 2)	(99 ± 0.4)	(101 ± 0.5)	(68 ± 0.1)	(100 ± 0.5)	(98 ± 0.3)	(101 ± 0.5)	(101 ± 1)	(101 ± 1)	(100 ± 1)
R i	200	301 ± 0.2	301 ± 1	300 ± 0.5	300 ± 0.3	192 ± 1	300 ± 1	300 ± 1	300 ± 1	300 ± 1	301 ± 1	300 ± 0.2
	300	(100 ± 1)	(101 ± 1)	(100 ± 1)	(100 ± 0.1)	(64 ± 1)	(100 ± 1)	(100 ± 1)	(100 ± 0.3)	(100 ± 0.4)	(100 ± 1)	(100 ± 1)
	0	0.30 ± 0.01	< LLD	0.6 ± 0.1	< LLD	< LLD	< LLD	< LLD	< LLD	< LLD	< LLD	< LLD
H	10	10 ± 0.2	10 ± 0.1	10 ± 0.1	10 ± 0.1	~11D	10 ± 0.2	10 ± 0.2	10 ± 0.1	10 ± 0.2	10 ± 0.1	
vat		(101 ± 2)	(105 ± 1)	(104 ± 1)	(100 ± 1)		(102 ± 2)	(102 ± 2)	(101 ± 2)	(105 ± 3)	(100 ± 1)	
M U	50 50 (10	50 ± 0.1	50 ± 0.1	50 ± 0.1	50 ± 0.3	38 ± 0.3	50 ± 0.1	50 ± 0.1	50 ± 0.2	50 ± 1	50 ± 0.2	50 ± 0.2
)an		(100 ± 0.1)	(101 ± 0.2)	(101 ± 0.1)	(101 ± 1)	(76 ± 1)	(100 ± 0.3)	(100 ± 0.3)	(100 ± 0.4)	(101 ± 0.1)	(100 ± 0.5)	(100 ± 0.4)
Η	300 3	301 ± 0.5	300 ± 0.4	300 ± 1	300 ± 0.2	191 ± 1	300 ± 0.5	300 ± 0.1	300 ± 0.3	301 ± 0.2	300 ± 0.5	300 ± 0.1
	200	(100 ± 0.2)	(100 ± 0.1)	(100 ± 0.3)	(100 ± 0.1)	(64 ± 1)	(100 ± 0.1)	(100 ± 1)	(100 ± 0.1)	(100 ± 1)	(100 ± 0.2)	(100 ± 0.2)
Well water	0	< LLD	< LLD	3.3 ± 0.2	< LLD	< LLD	< LLD	< LLD	< LLD	< LLD	< LLD	< LLD
	10	11 ± 1	10 ± 0.1	10 ± 0.1	10 ± 0.2	< LLD	10 ± 1	9 ± 0.1	10 ± 0.1	10 ± 0.1	11 ± 0.2	< LLD
		(109 ± 1)	(103 ± 1)	(99 ± 1)	(104 ± 2)		(108 ± 1)	(94 ± 1)	(97 ± 2)	(98 ± 1)	(106 ± 3)	
	50	51 ± 0.2	50 ± 1	51 ± 0.2	50 ± 1	39 ± 0.1	51 ± 0.5	50 ± 1	49 ± 1	51 ± 1	49 ± 0.4	50 ± 0.3
		(101 ± 0.4)	(100 ± 1)	(102 ± 0.4)	(101 ± 1)	(78 ± 1)	(102 ± 2)	(101 ± 0.3)	(98 ± 1)	(102 ± 1)	(98 ± 1)	(101 ± 1)
-	300	301 ± 0.3	303 ± 1	302 ± 0.1	296 ± 1	193 ± 1	300 ± 0.4	302 ± 1	298 ± 0.4	300 ± 0.4	300 ± 0.5	301 ± 0.4
	2.90	(100 ± 1)	(101 ± 3)	(101 ± 0.5)	(98 ± 0.4)	(64 ± 0.3)	(100 ± 0.1)	(101 ± 0.3)	(99 ± 0.5)	(100 ± 1)	(100 ± 1)	(100 ± 1)

Table S3. Found values and recoveries obtained by applying the *in situ* UAMS-SIC approach combined with TXRF for different natural water matrices

LLD: Lowest detection limit