SUPPLEMENTAL INFORMATION
Analytical method for total chromium and nickel in urine using an inductively
coupled plasma-universal cell technology-mass spectrometer (ICP-UCT-MS) in
kinetic energy discrimination (KED) mode
C. Derrick Quarles Jr.*, Deanna R. Jones, Jeffery M. Jarrett, Gulchekhra Shakirova, Yi
Pan, Kathleen L. Caldwell, Robert L. Jones
Inorganic & Radiation Analytical Toxicology Branch
National Center for Environmental Health
Centers for Disease Control and Prevention
4770 Buford Highway, Mailstop F-18
Atlanta, GA 30341

⁵² Cr (m/z)	Potential Interference (AB)	Isotopic Abundance A %	Expected Concentration of A in Urine (ug L ⁻¹)	Isotopic Abundance B %	Expected Concentration of B in Urine (ug L ⁻¹)
51.4528	¹⁰³ Rh ⁺⁺	100	0.001 - 0.039	-	-
51.9520	¹⁰⁴ Pd ⁺⁺	11.1	0.07 - 0.64	-	-
51.9527	¹⁰⁴ Ru ⁺⁺	18.7	Expected to be low	-	-
51.9620	³⁶ S ¹⁶ O ⁺	0.02	High	99.8	atmosphere
51.9624	¹² C ⁴⁰ Ar ⁺	98.9	High	99.6	ICP gas
51.9625	³⁶ Ar ¹⁶ O ⁺	0.3	ICP gas	99.8	atmosphere
51.9658	¹⁴ N ³⁸ Ar ⁺	99.6	atmosphere	0.06	ICP gas
51.9680	³⁵ Cl ¹⁷ O ⁺	75.8	≤ 5,900,000	0.04	atmosphere
52.4530	¹⁰⁵ Pd ⁺⁺	22.3	0.07 - 0.64	-	-
51.9518	${}^{51}V^1H^+$	99.8	0.2 - 10	100	atmosphere
51.9626	⁴⁰ Ca ¹² C ⁺	96.9	30,000 – 200,000	98.9	~ 5,000,000
51.9671	³⁹ K ¹³ C ⁺	93.3	542,000 - 9,770,000	1.1	~ 5,000,000
51.9660	³⁷ Cl ¹⁵ N ⁺	24.2	≤ 5,900,000	0.4	atmosphere
51.9768	³⁷ Cl ¹⁴ N ¹ H ⁺	24.2	≤ 5,900,000	99.6/100	atmosphere
51.9716	³⁵ Cl ¹⁶ O ¹ H ⁺	75.8	≤ 5,900,000	99.8/100	atmosphere
51.9699	³³ S ¹⁹ F ⁺	0.8	High	100	200 - 3,200
51.9676	²¹ Ne ³¹ P ⁺	0.3	Expected to be low	100	220,000 - 2,600,000
51.9645	²⁰ Ne ³² S ⁺	90.5	Expected to be low	95.0	~ 5,000,000

15	Table S1. List of potential interferences for analyzing ⁵² Cr in urine. Masses determined
16	using ThermoFinnigan Element2 ICP-MS Interference Workshop software.

)					J.	
	⁶⁰ Ni (m/z)	Potential Interference (AB)	Isotopic Abundance A %	Expected Concentration of A in Urine (µg L ⁻¹)	Isotopic Abundance B %	Expected Concentration of B in Urine (µg L ⁻¹)
	59.4516	¹¹⁹ Sn ⁺⁺	8.6	0.05 - 2.28	-	-
	59.9504	⁴⁴ Ca ¹⁶ O⁺	2.1	30,000 - 200,000	99.8	atmosphere
	59.9511	¹²⁰ Sn ⁺⁺	32.6	0.05 - 2.28	-	-
	59.9520	¹²⁰ Te ⁺⁺	0.1	Expected to be low	-	-
	59.9526	²⁴ Mg ³⁶ Ar ⁺	79	40,500 - 243,000	0.3	ICP gas
	59.9541	²² Ne ³⁸ Ar ⁺	9.2	Expected to be low	0.06	ICP gas
	59.9548	²⁰ Ne ⁴⁰ Ar ⁺	90.5	Expected to be low	99.6	ICP gas
	60.4519	¹²¹ Sb ⁺⁺	57.3	0.12 - 10.0	-	-
	59.9410	⁵⁹ Co ¹ H⁺	100	0.28 - 2.0	100	atmosphere
	59.9495	⁵⁸ Ni ² H⁺	68.3	0.055 - 20.0	0.02	atmosphere
	59.9480	⁴⁸ Ti ¹² C ⁺	73.8	0.1 - 3.7	98.9	~ 5,000,000
	59.9525	⁴⁸ Ca ¹² C ⁺	0.2	30,000 - 200,000	98.9	~ 5,000,000
	59.9551	⁴⁷ Ti ¹³ C ⁺	7.3	0.1 - 3.7	1.1	~ 5,000,000
	59.9557	⁴⁶ Ti ¹⁴ N ⁺	8.0	0.1 - 3.7	99.6	atmosphere
	59.9560	⁴⁵ Sc ¹⁵ N ⁺	100	-	0.4	atmosphere
	59.9668	⁴⁵ Sc ¹⁴ N ¹ H ⁺	100	-	99.6/100	atmosphere
	59.9615	⁴³ Ca ¹⁶ O ¹ H⁺	0.1	30,000 - 200,000	99.8/100	atmosphere
	59.9688	⁴¹ K ¹⁸ O ¹ H ⁺	6.7	542,000 - 9,770,00	0.2/99.9	atmosphere
	59.9602	⁴¹ K ¹⁹ F ⁺	6.7	542,000 - 9,770,00	100	200 - 3,200
	59.9503	²⁹ Si ³¹ P ⁺	4.7	100 - 51,600	100	220,000 - 2,600,000
	59.9490	²⁸ Si ³² S ⁺	92.2	100 - 51,600	95.0	~ 5,000,000
	59.9505	²⁶ Mg ³⁴ S ⁺	11.0	40,500 - 243,000	4.2	~ 5,000,000
	59.9521	²⁴ Mg ³⁶ S⁺	79.0	40,500 - 243,000	0.02	~ 5,000,000
	59.9530	²⁷ AI ³³ S ⁺	100	5 - 30	0.8	~ 5,000,000
	59.9547	²⁵ Mg ³⁵ Cl ⁺	10.0	40,500 - 243,000	75.8	~ 6,000,000
	59.9557	²³ Na ³⁷ Cl ⁺	100	281 - 10,110	24.2	~ 6,000,000

Table S2. List of potential interferences for analyzing ⁶⁰Ni in urine. Masses determined using ThermoFinnigan Element2 ICP-MS Interference Workshop software.

Figure S1a. The effects of cell gas flow rate on ion signal intensity at m/z 52 using

methane gas on Cr analysis in urine samples spiked with 1 μ g L⁻¹ Cr, 1% ethanol (⁴⁰Ar¹²C⁺), and/or 1% HCl (³⁵Cl¹⁶O¹H⁺).

32 **Figure S1b.** The effects of cell gas flow rate on ion signal intensity at m/z 52 using

- oxygen gas on Cr analysis in urine samples spiked with $1 \mu g L^{-1}$ Cr, 1% ethanol
- 34 (40 Ar¹²C⁺), and/or 1% HCl (35 Cl¹⁶O¹H⁺).

Figure S1c. The effects of cell gas flow rate on ion signal intensity at m/z 52 using ammonia gas on Cr analysis in urine samples spiked with 1 μ g L⁻¹ Cr, 1% ethanol (⁴⁰Ar¹²C⁺), and/or 1% HCl (³⁵Cl¹⁶O¹H⁺).

40

Figure S1d. The effects of cell gas flow rate on ion signal intensity at m/z 52 using

44 argon/hydrogen gas on Cr analysis in urine samples spiked with 1 μ g L⁻¹ Cr, 1% ethanol 45 (⁴⁰Ar¹²C⁺), and/or 1% HCl (³⁵Cl¹⁶O¹H⁺).

Figure S1e. The effects of cell gas flow rate on ion signal intensity at m/z 52 using

50 helium gas on Cr analysis in urine samples spiked with 1 μ g L⁻¹ Cr, 1% ethanol

 $({}^{40}\text{Ar}{}^{12}\text{C}^+)$, and/or 1% HCl $({}^{35}\text{Cl}{}^{16}\text{O}^1\text{H}^+)$.

Figure S2a. The effects of cell gas flow rate on ion signal intensity at m/z 60 using methane gas on Ni analysis in urine samples spiked with 1 μ g L⁻¹ Ni and/or 1% ethanol + 20 mg L⁻¹ Ca (⁴⁴Ca¹⁶O⁺).

Figure S2b. The effects of cell gas flow rate on ion signal intensity at m/z 60 using

61 oxygen gas on Ni analysis in urine samples spiked with 1 μ g L⁻¹ Ni and/or 1% ethanol + 62 20 mg L⁻¹ Ca (⁴⁴Ca¹⁶O⁺).

Figure S2c. The effects of cell gas flow rate on ion signal intensity at m/z 60 using

ammonia gas on Ni analysis in urine samples spiked with 1 μ g L⁻¹ Ni and/or 1% ethanol + 20 mg L⁻¹ Ca (⁴⁴Ca¹⁶O⁺).

Figure S2d. The effects of cell gas flow rate on ion signal intensity at m/z 60 using

argon/hydrogen gas on Ni analysis in urine samples spiked with 1 μ g L⁻¹ Ni and/or 1% ethanol + 20 mg L⁻¹ Ca (⁴⁴Ca¹⁶O⁺).

Figure S2e. The effects of cell gas flow rate on ion signal intensity at m/z 60 using

⁷⁶ helium gas on Ni analysis in urine samples spiked with 1 μ g L⁻¹ Ni and/or 1% ethanol + ⁷⁷ 20 mg L⁻¹ Ca (⁴⁴Ca¹⁶O⁺).

Figure S3. Displays the response at m/z 52 for 2% HNO₃, 1% EtOH, and/or 1 μ g L⁻¹ Cr under increasing helium cell gas flow rates in KED mode.

Figure S4. Displays the response at m/z 60 for 2% HNO₃, 1% EtOH and 20 mg L⁻¹ Ca, and/or 1 μ g L⁻¹ Ni under increasing helium cell gas flow rates in KED mode.

Table S3. ESI FAST method control parameters that control the functions for the autosampler events during the NexION ICP-MS wash time.

Event	Action	Parameters	Parameter Units
On Probe Down	Vacuum1 On		
On Probe Down	Load1		
Probe In Sample	Timer A	4	seconds
Timer A Expires	Inject1		
Timer A Expires	Move Rinse		
Rinse Completed	Probe Up		
On Rinse	Vacuum1 On		
On Rinse	Load1		
On Rinse	Probe Down		
On Rinse	Timer B	2	seconds
Timer B Expires	Probe Up		
Timer B Expires	Timer C	2	seconds
Timer C Expires	Probe Down		
Timer C Expires	Timer D	2	seconds
Timer D Expires	Probe Up		
Timer D Expires	Timer E	2	seconds
Timer E Expires	Probe Down		
Timer E Expires	Timer F	2	seconds
Timer F Expires	Move Next		

114

- 116 **Table S4.** In house CDC quality control samples used to show % recovery of the
- 117 method. N = 5.

		Cr		
Sample ID	Target (µg L⁻¹)	Average ± 1 SD (µg L ⁻¹)	% Recovery ± 1 SD	
Low QC	0.820	0.885 ± 0.128		
+ 1 μg L ⁻¹	1.82	1.75 ± 0.13	96.3 ± 7.1	
+ 3 μg L ⁻¹	3.82	3.87 ± 0.53	101 ± 14	
+ 10 μg L ⁻¹	10.8	10.6 ± 0.2	98.4 ± 1.9	
	Ni			
Sample ID	Target (µg L⁻¹)	Average ± 1 SD (µg L ⁻¹)	% Recovery ± 1 SD	
Low QC	1.36	1.59 ± 0.10		
+ 1 μg L ⁻¹	2.36	2.44 ± 0.12	103 ± 5	
+ 3 μg L ⁻¹	4.36	4.38 ± 0.40	101 ± 9	
+ 10 μg L ⁻¹	11.4	11.1 ± 0.3	97.9 ± 2.6	