
Diffusion- and velocity-driven spatial separation of analytes from single droplets entering an ICP off-axis

Olga Borovinskaya^a, Maryam Aghaei^c, Luca Flamigni^a, Bodo Hattendorf^a, Martin Tanner^b, Annemie Bogaerts^c, <u>Detlef Günther^a</u>

1. Dependence of temporal shifts and signal widths on the analyte concentration

Droplets of multi-element solutions of different concentrations were measured. The solutions were exchanged without adjusting operating parameters of the dispenser to keep the droplet size and ejection speed constant. After the removal for solution exchange, the dispenser head was inserted into the gas inlet at the same position to maintain the droplet trajectory. Figure 1 shows FWHM and temporal shifts of the ²⁰⁹Bi⁺ signal from the signal of ⁸⁹Y⁺ measured at different concentrations. Despite significant increase of signal intensities (from 700 ions/droplet to 8000 ions/droplet for ²⁰⁹Bi⁺ at concentrations of 1 mg/kg and 10 mg/kg, respectively) temporal positions of maxima remained constant within the uncertainty of the measurement (1 SD). A slight increase of the signal width with concentration was observed.

Figure 1. Temporal shifts of ²⁰⁹Bi⁺ signal from the ⁸⁹Y⁺ signal and signal widths of ²⁰⁹Bi⁺ measured at different concentrations of the multi-element solution. The error bars represent 1 SD of 500 measurements of individual droplets.

Chemical formula	Boiling temperature (K)	Literature source
Cu₂O	2073 ^d	http://www.hbcpnetbase.com/
ZnŌ	2623	Arch. Sci. Phys. Nat., 1919, vol. 1, p. 48 - 48
Y_2O_3	4573 [°]	Troshkina, O. B. Spektrosk. At. Mol., 1969, p. 17 - 22
CdO	1832	http://www.hbcpnetbase.com/
In ₂ O ₃	1123	Zeitschrift fuer Anorganische und Allgemeine
		Chemie, 1999, vol. 625, p. 1890 - 1896
BaO	-	-
La_2O_3	3893	http://www.hbcpnetbase.com/
Ce_2O_3	4003	http://www.wolframalpha.com/
Ho ₂ O ₃	4173	http://www.hbcpnetbase.com/

2. Boiling temperatures of oxides

Electronic Supplementary Material (ESI) for Journal of Analytical Atomic Spectrometry This journal is The Royal Society of Chemistry 2013

Er_2O_3	4193	http://www.hbcpnetbase.com/
HfO ₂	5673	Gmelin Handbook: Hf: SVol., 6, page 20 - 22
PbO	1743	Z. Erzbergbau Metallhuettenwes., 1957, vol. 10, p. 64 - 71
Bi ₂ O ₃	2163	http://www.hbcpnetbase.com/
ThO ₂	4673	http://www.hbcpnetbase.com/

^d Decomposition temperature, ^s sublimation temperature