Non-chromatographic speciation of inorganic arsenic by atomic fluorescence spectrometry with flow injection hydride generation by a tetrahydroborate-form anion-exchanger

Nan Wang and Julian Tyson

Department of Chemistry, University of Massachusetts, 710 North Pleasant Street, Amherst.

MA 01003, USA. E-mail Tyson@chem.umass.edu.

Supplementary information.

The well water and seawater samples were analyzed for 21 elemental constituents by plasma source mass spectrometry. The samples were acidified with 2% high purity nitric acid (Fisher Scientific certified ACS grade), filtered through 0.45µm polyethersulfone membrane Whatman Puradisc syringe filters that were 25 mm in diameter, stored at 4 °C until analysis and measured without further dilution.

The instrument (a PerkinElmer Sciex Elan model 6100) was operated according to the manufacturer's recommended conditions, which are shown in Table S1. Correction for isobaric overlap was applied according to the default conditions of the manufacturer's software. External calibration, with standards prepared by serial dilution of Quality Control Standard 21 (PerkinElmer, Waltham, MA, USA), covering the range $0 - 100 \text{ mg L}^{-1}$, was used. The results are given in Table S2, including the values for arsenic, which is one of the 21 elements in the standard solution.

Parameter	Setting
RF Power	1500 W
Nebulizer	1.01 L min ⁻¹
Gas Flow	
Nebulizer	Gem Tip Cross-Flow II
Туре	
Spray	Scott
Chamber	
Detector	Dual mode
Mode	
Sample/Ski	Nickel
mmer	
Cones	
Dwell Time	100 ms per point
Scanning	Peak hopping
Mode	

Table S1. Operating conditions for plasma source mass spectrometer

Number of	10
replicates	
Isotopes	⁷⁵ As, ⁹ Be, ⁴³ Ca, ¹¹¹ Cd, ⁵⁹ Co, ⁵² Cr, ⁶³ Cu, ⁵⁷ Fe, ⁷ Li, ²⁴ Mg, ⁵⁵ Mn, ⁹⁸ Mo, ⁶⁰ Ni, ²⁰⁸ Pb, ¹²¹ S
	b, ⁸² Se, ⁸⁸ Sr, ⁴⁷ Ti, ²⁰⁵ Tl, ⁵¹ V, ⁶⁶ Zn

Element	Well	Well	Well	Well	Seawater	Seawater
	Water 1 ^f	Water 1	Water 2 ^f	Water 2	1	2
As	1.45	1.29	1.01	0.81	41.6	42.2
Ti	1.71	1.60	2.64	2.83	45.6	56.1
Be	ND	ND	ND	ND	ND	ND
Ca	18800	19200	4390	4340	107000	114000
Cd	0.035	0.010	0.016	0.014	0.101	0.094
Со	0.309	0.166	0.097	0.094	0.863	0.824
Cr	1.03	1.20	0.57	0.51	0.89	0.84
Cu	296	213	27	22	18	16
Li	2.6	2.9	2.2	2.3	106	115
Fe	196	202	50	48	1150	1220
Mg	1830	2040	1590	1610	NM	NM
V	0.76	0.62	0.62	0.58	19.7	21.4
Mn	1.37	1.99	1.39	1.30	39.6	1.21
Ni	9.18	2.05	3.78	0.57	6.70	7.24
Zn	2084	19	320	17	13	6
Se	ND	0.15	0.15	0.33	ND	ND
Sr	423	43	30	30	3330	3390
Mo	0.04	0.02	3.0	3.0	3.1	5.5
Sb	1.14	0.03	0.02	0.02	0.11	0.09
Tl	0.06	0.05	0.04	0.04	0.05	0.05
Pb	1.26	0.43	0.40	0.50	0.38	0.23
f first draw sample						
ND not detected						
NM not measured as concentration too high						

Table S2. Elemental concentrations ($\mu g L^{-1}$) in natural water samples measured by ICP-MS

It may be seen that the values for arsenic are consistent with those obtained by HG-AFS yields for the well water samples, that the values for the seawater samples are much higher than the results from the AFS measurements. There are several possible polyatomic interfering species, including ⁴⁰Ar³⁵Cl, ⁴⁰Ar³⁴SH, and ⁴⁰Ca³⁵Cl, that could be responsible.

Typical operating conditions of the AFS spectrometer in continuous-flow mode are given in

Table S3 for the three replicate measurements, and for the column-based HG mode in Table S4. The major difference is that in the continuous-flow mode, the hydrogen for the flame atomizer is generated continuously from the reaction between the borohydride and hydrochloric acid, requiring continuous deliver of a relatively high concentration of acid.

Parameter	Value	
HCl Concentration	4 M	
HCl flow rate	9 mL/min	
Sample preparation volume	50 mL	
NaBH ₄ Concentration	0.7%	
NaBH ₄ flow rate	4.5 mL/min	
Sample running time	80s	
HCl consumption from sample	200 mmol	
(4 M x 50 mL)		
HCl consumption from blank	144 mmol	
(4 M x 9 mL/min x 3 x 80 s/60 s min ⁻¹)		
HCl consumption in total	344 mmol	
NaBH ₄ consumption	126 mg	
(0.7% x 4.5 mL/min x 80 s/60 s min ⁻¹ x 3)		

Table S4 Anion-exchanger HG conditions

Parameter	Value	
HCl Concentration	0.1 M	
Sample Volume	0.5 mL	
Sample preparation volume	25 mL	
NaBH ₄ Concentration	5%	
NaBH ₄ flow rate	4.5 mL/min	
NaBH ₄ loading time (for triplicate)	60 s	
HCl consumption (0.1 M x 25 mL)	2.5 mmol	
NaBH ₄ consumption (5% x 1 min x 4.5 mL/min)	225 mg	