Appendix

The limits of detection for both laser-ablation approaches were calculated basing on 3s of the gas blank and the sensitivity, calculated using the external standard meteorite:

$$LoD_x = \frac{C_x^{std}}{I_x^{std}} \cdot 3s_{gas\ blank};$$

For the case of bulk LA-ICP-MS the intensities of Canyon Diablo external standard at instrument settings corresponding to that of samples were used to calculate the LoDs.

For the case of mapping LA-ICP-MS the intensities of Cheder external standard at instrument settings corresponding to that of Darinskoe analysis were used to calculate the LoDs.

It is important to stress again that sensitivity of the external standard depends on instrument settings (mainly on laser frequency, beam diameter and energy fluence), while the total level and 3s of the gas blank for most elements stays relatively constant. In this work we had relatively high LoDs for Pd and Mo in bulk LA. It is caused by contamination from samples with high content of Mo and Pd analyzed before. But the background level of these elements had decreased 10-100 times when we started mapping at another analytical session, because contamination was continuously washing out. So it is possible that even with the same instrument LoDs are different at different days.

CRM	Matrix	Provider
NBS 2423a	Ductile iron	$NIST^1$
NBS 1286	Low-alloy steel	$NIST^1$
NBS 341	Ductile iron	$NIST^1$
NBS 362	Low-alloy steel	$NIST^1$
NIST 610	Synthetic glass	$NIST^1$
GSD-1G	Basalt glass	$USGS^2$

 Table 1 List of CRMs used. ¹ - National Institute of Standards and Technology, ² - United States Geological Survey

	Ru	Rh	Pd	Os	Ir	Pt	Au	Re
Recovery,	43	4.3	58	1.2	58	70	89	98
%								
Breakthrough,	57	95	0.03	3.0	40	2.2	0.2	0.04
%								
	Fe	Co	Ni	Cu	Zn	Mo	Cd	
Recovery,	35	0.07	0.03	0.3	18	11	0.04	
%								
Breakthrough,	110	100	100	99	110	90	99	
0%								

 Table 2 Recoveries of the elements after the anion-exchange column

 separation are calculated as their mass found in analyte fraction relative to the mass loaded. Breakthrough is calculated as the mass found in the wash fraction relative to the amount loaded.

X Series II ICP mass spectrometer									
Plasma power		1400 W							
Sampler cone		Ni Xt cone; 1.1 mm aperture diameter							
Skimmer cone		Ni Xt cone; 0.75 mm aperture diameter							
Argon gas flow Cool		$13.0 \mathrm{L} \cdot \mathrm{min}^{-1}$							
rates	Auxiliary	0.70 L·min ⁻¹							
	Nebulizer	0.95 L·min ⁻¹							
Nuclides monitore	ed	⁵¹ V, ⁵² Cr, ⁵⁵ Mn, ⁵⁹ Co, ⁶⁰ Ni, ⁶³ Cu, ⁷⁵ As, ⁹⁵ Mo							
UP193HE ArF* e	xcimer based laser								
He carrier gas flow rate		$0,182 \text{ L}\cdot\text{min}^{-1}$ He							
Laser wavelength		193 nm							
Laser pulse duration		20 ns							
Laser beam diameter		400 μm							
Laser fluence		9-10 J·cm ⁻²							
Lateral scanning s	peed	$10 \ \mu m \cdot s^{-1}$							
Total area ablated		1.52 mm^2							

Table 3 ICP-MS and LA instrument settings used for analysis of steel and glass CRMs for determining RSFs.

Co	Ni	Cu	Ga	Ge	As	Mo	Ru	Rh	Pd	W	Re	Os	Ir	Pt	Au	Pb	Method	ref
							5.9										Gravimetry	1
																0.224	ID-MS	2
						7.5											ID-MS	3
													2.0	5.7	1.43		INAA	4
								1.5	3.6								Spectrographic	5
											0.181				1.47		INAA	6
		125	79.7	322	12.4	7.4			3.6								INAA	7
			79.7	324													INAA	8
	71 900		81.8	328													INAA	9
													1.86				INAA	10
		138									0.252	2.07	2.02				INAA	11
	69700		80	337													INAA	12
													2.175		1.43		INAA	13
			80.4	324									1.97				AAS, INAA	14
							5.2					2.1	2.0		1.47		INAA	15
	69800				12.4					1.00			2.36		1.54		INAA	16
									4.2								ID-TIMS	17
	69100						5.7				0.198	2.2	2.18	5.8	1.33		INAA	18
620	69000	148			12.4					1.00	0.210		2.10		1.60		INAA	19
	69800							1.6				2.13	2.01		1.52		INAA	20
640	69100	150	82	321	13					1.055	0.246		2.28	6.2	1.54		INAA	21
680	69200	148	83.8	322	12.7					0.99	0.228		2.17	6.3	1.57		INAA	21
	69800						5.24		4.4					6.2			ETV-AAS	22
660	70100	152	81.8	327	13.1					1.11	0.25		2.32	6.2	1.56		INAA	23
630	69300	148	82.1	323	13					1.06	0.253			6.1	1.534		INAA	24
650	69300	150	83	330	13					1.07	0.234			6.3	1.552		INAA	24
		142		315			5.4	1.42	4.1		0.207			6.6	1.424		PN-ICP-MS	25
647	69664	145	81.4	324.8	12.8	7.5	5.5	1.5	3.98	1.04	0.226	2.13	2.11	6.16	1.50	0.224	Average	

Table 4 Compilation of literature data (in $\mu g/g$) on the elemental composition of the Canyon Diablo meteorite.

References

- 1 T. Hara and E.B. Sandell, *Geochimica et Cosmochimica Acta*, 1960, **21**, 145-150.
- 2 R. R. Marshall and J. Feitknecht, *Geochimica et Cosmochimica Acta*, 1964, **28**, 365-379.
- 3 G. W. Wetherill, *Journal of Geophysical Research*, 1964, **69**, 4403-4408.
- 4 P. A. Baedecker and W. D. Ehmann, *Geochimica et Cosmochimica* Acta, 1965, **29**, 320-342.
- ¹⁰ 5 W. Nichiporuk and H. Brown, *Journal of Geophysical Research*, 1965, **70**, 459-470.
 - 6 K. F. Fouche and A. A. Smales, Chem. Geol., 1966, 1, 329-339.
- 7 A. A. Smales, D. Mapper and K. F. Fouche, *Geochlmlca et Cosmochimica Acta*, 1966, **31**, 673-720.
- ¹⁵ 8 K. F. Fouche and A.A. Smales, *Chem. Geol.*, 1967, **2**, 5-33.
- 9 J. T. Wasson, Journal of Geophysical Research, 1967, 72, 721-730.
- 10 J. Kimberlin, C. Charoonratana and J. T. Wasson, *Radiochim. Acta*, 1968, **10**, 69-76.
- 11 U. Herpers, W. Herr and R. Wölfle, *Meteorite Research*, 1969, **12**, 387-396.
- 12 R. Bauer and R. Schaudy, Chem. Geol., 1970, 6, 119-131.
- 13 W. D. Ehmann, P. A. Baedecker and D. M. McKown, *Geochimica et Cosmochimica Acta*, 1970, 34, 493-507.
- 14 J. T. Wasson, *Icarus*, 1970, **12**, 407-423.
- 25 15 J. H. Crocket, Geochimica et Cosmochimica Acta, 1972, 36, 517-535.
- 16 E. R. D. Scott, Earth and Planetary Science Letters, 1977, 37, 273-284.
- 17 N. Mermelengas, R. De Laeter and K. J. R. Rosman, *Geochimica et Cosmochimica Acta*, 1979, **43**, 747-753.
- 30 18 E. Pernicka and J. T. Wasson, Geochimica et Cosmochimica Acta, 1987, 51, 1717-1726.
 - 19 K. L. Rasmussen, D. J. Malvin and J. T. Wasson, *Meteoritics*, 1988, 23, 107-112.
- 20 D. E. Ryan, J. Holzbecher and R.R. Brooks, *Chem. Geol.*, 1990, **85**, 295-303.
- 21 J. T. Wasson and X. Ouyang, *Geochimica et Cosmochimica Acta*, 1990, **54**, 3175-3183.
- 22 M. Hoashi, R. R. Brooks and R. D. Reeves, *Chem. Geol.*, 1993, 106, 207-218.
- 40 23 B. G. Choi, X. Ouyang and J.T. Wasson, Geochimica et Cosmochimica Acta, 1995, 59, 593-612.
 - 24 J. T Wasson and G. W Kallemeyn, Geochimica et Cosmochimica Acta, 2002, 66, 2445-2473.
- 25 M. D'Orazio and L. Folco, *Geostandards Newsletter*, 2003, **27**, 215-45 225.