Electronic Supplementary Material (ESI) for Journal of Analytical Atomic Spectrometry. This journal is © The Royal Society of Chemistry 2014

Comparison of microsublimation and ion exchange chromatography for

boron isolation preceding its isotopic analysis via multi-collector ICP-

MS

K. Van Hoecke ^a, V. Devulder ^{a,b}, P. Claeys ^c, P. Degryse ^b and F. Vanhaecke ^{a,*}

Supporting Information

1. Influence of remaining natural B on final δ^{11} B of isotopic reference materials

1.1 Boron isotope ratio of mixture of two sources

The final ¹¹B/¹⁰B isotope ratio in the samples $(^{11}B/^{10}B)_{mix}$ can be considered as a mixture of two sources, the remaining natural B $(^{11}B/^{10}B)_{bl}$ and the spiked reference material AE120, AE121 or AE122 $(^{11}B/^{10}B)_{sa}$. The final isotope ratio of the mixture can be calculated as:

$$\left(\frac{{}^{11}B}{{}^{10}B}\right)_{mix} = \frac{{}^{11}B_{sa} + {}^{11}B_{bl}}{{}^{10}B_{sa} + {}^{10}B_{bl}}$$
(Eq. S1)

In this case, both $({}^{11}B/{}^{10}B)_{bl}$ and $({}^{11}B/{}^{10}B)_{sa}$ are known, as well as the total mass of B present in the blank and the sample. Hence, each of the four terms in the equation can be calculated. For example:

$${}^{11}B_{sa} = n(B_{sa}) \times f^{11}B_{sa} \tag{Eq. S2}$$

where $n(B_{sa})$ is the number of moles of B and $f^{11}B_{sa}$ is the fraction of ¹¹B in the standard spike. Both terms in this equation can be calculated following:

$$f^{11}B_{sa} = \frac{100 \times {\binom{11B}{10}_B}_{sa}}{1 + {\binom{11B}{10}_B}_{sa}}$$
(Eq. S3) and $n(B_{sa}) = \frac{m(B_{sa})}{MM_{sa}}$

In the latter equation, $m(B_{sa})$ is the mass of B and MM_{sa} is the molar mass of B in the spiked standard. The molar mass can be calculated using the following equation:

$$MM_{sa} = \frac{f^{11}B_{sa}}{100} \times 11.00931 + \frac{100 - f^{11}B_{sa}}{100} \times 10.01924$$

(Eq. S5)

The three other terms in equation S1 can be determined in a similar way.

1.2 Calculation of $\delta^{11}B_{mix}$ in seawater, spinach and silicate glass

Using the equations outlined above, the $\delta^{11}B_{mix}$ values were calculated in order to evaluate if the low concentrations of remaining natural B in the sample matrices could have affected the final result of the spiked standard. In literature reported $\delta^{11}B$ values for seawater, plant material and NIST 610 silicate glass were used as input parameters for the calculation of $\delta^{11}B_{mix}$. All data input and final results of $\delta^{11}B_{mix}$ in seawater samples are given in Table S1. It is clear that final $\delta^{11}B$ values equal those of the reference materials.

Table S1 - Input parameters and final δ^{11} B values in seawater matrices spiked with certified boron reference materials

Seawater										
	Micr	osublim	ation	Chromatography						
$m(B_{bl}) (ng)$		0.3		0.6						
$\delta^{11}B_{bl}$ (‰)		39.6 [S1]		39.6						
$m(B_{sa}) (ng)$		800		4000						
$\delta^{11}B_{sa}$ (‰)	-20.2 19.9 39.			-20.2	19.9	39.7				
$\delta^{11}B_{mix}$ (%)	-20.2	19.9	39.7	-20.2	19.9	39.7				

To our knowledge, no δ^{11} B data on NIST 1570 spinach powder have been published. Therefore, two outer values of the range in δ^{11} B observed in plant material were used as input parameters, *i.e.* -30 and +40 ‰ [S2]. For microsublimated samples, a maximum deviation of 0.1 ‰ can be expected due to the 26 µg/l of natural B remaining in the samples.

Table S2 - Input parameters and final $\delta^{11}B$ values in spinach matrices spiked with certified boron reference materials

Spinach powder												
	Microsublimation						Chromatography					
$m(B_{bl}) (ng)$		1.3 1.3					2.6			2.6		
$\delta^{11} \mathrm{B}_{\mathrm{bl}}$ (‰)	-30 40					-30			40			
$m(B_{sa}) (ng)$	800			800			4000			4000		
$\delta^{11}B_{sa}$ (%)	-20.2	19.9	39.7	-20.2	19.9	39.7	-20.2	19.9	39.7	-20.2	19.9	39.7
$\delta^{11}B_{mix}$ (%)	-20.2	19.8	39.6	-20.1	19.9	39.7	-20.2	19.9	39.7	-20.2	19.9	39.7

Finally, the lowest and highest δ^{11} B values of NIST 610 silicate glass published in literature are - 8.4 and 0.0 ‰, respectively [S3, S4]. When these values, together with a mass of remaining B

calculated from the limit of detection, are used as input parameters, no significant deviation from the certified values is expected.

NIST 610 silicate glass												
	Microsublimation					Chromatography						
$m(B_{bl}) (ng)$	0.1 0.1						0.2			0.2		
$\delta^{11} \mathrm{B}_{\mathrm{bl}}$ (%)	-8.4 (0.0	0.0 -8.4			0.0				
$m(B_{sa}) (ng)$	800			800			4000			4000		
$\delta^{11}B_{sa}$ (%)	-20.2	19.9	39.7	-20.2	19.9	39.7	-20.2	19.9	39.7	-20.2	19.9	39.7
$\delta^{11}B_{mix}$ (%)	-20.2	19.9	39.7	-20.2	19.9	39.7	-20.2	19.9	39.7	-20.2	19.9	39.7

Table S3 - Input parameters and final δ^{11} B values in silicate glass matrices spiked with certified boron reference materials

2. Mass discrimination correction

In this work, a combination of internal correction using the common analyte internal standardization (CAIS) method and external correction relying on sample-standard bracketing (SSB) was used. The isotopic reference material Li₂CO₃ IRMM-016 was spiked to all standards and samples as an internal standard. Pure NIST SRM 951 boric acid bracketing standards and 2 M HCl - doped standards were included in the MC-ICP-MS measurement sequence.

The first step in the application of CAIS internal correction, is establishing a linear relationship between the measured (uncorrected) ${}^{11}B/{}^{10}B$ and the ${}^{7}Li/{}^{6}Li$ isotope ratios in the pure and 2 M HCl doped standards, $({}^{11}B/{}^{10}B)_{ref,meas}$ and $({}^{7}Li/{}^{6}Li)_{ref,meas}$, respectively. An example of such a linear relationship is given in Figure S1. Hence, for each sample, the expected measured $({}^{11}B/{}^{10}B)_{ref,meas}$ can be calculated from the observed $({}^{7}Li/{}^{6}Li)_{ref,meas}$. The ratio of the true $({}^{11}B/{}^{10}B)_{ref,true}$ to the calculated $({}^{11}B/{}^{10}B)_{ref,meas}$ now gives the extent of mass discrimination and this factor is subsequently used to correct the measured $({}^{11}B/{}^{10}B)_{sample,meas}$ into $({}^{11}B/{}^{10}B)_{sample,corr}$. This procedure can be summarized via the following equations:

$$\binom{11B}{10B}_{sample,corr} = \binom{11B}{10B}_{sample,meas} \times \frac{\binom{11B}{10B}_{ref,true}}{\binom{11B}{10B}_{ref,meas}}$$
(Eq.S6)

Where:

$$\binom{11}{B}^{10}B_{ref,meas} = a \times \binom{7Li}{^6Li}_{ref,meas} + b$$
 (Eq.S7)

and
$$\binom{11B}{10B}_{ref,true}$$
 is 4.0436 ± 0.0027 [S5]

Finally, in equation S7, the parameters *a* and *b* are deduced from the linear regression between $({}^{11}B/{}^{10}B)_{ref,meas}$ and $({}^{7}Li/{}^{6}Li)_{ref,meas}$ in the pure and doped standards.

Figure S1 - Linear correlation between (¹¹B/¹⁰B)_{ref,meas} and (⁷Li/⁶Li)_{ref,meas} observed in pure (●) and HCl doped (□) standards.

After correction using the CAIS method, external correction, relying on SSB, is applied according to equation S8.

$$\begin{pmatrix} \frac{1^{11}B}{1^{0}B} \end{pmatrix} corr, final$$

$$= \left(\frac{\left(\frac{1^{11}B}{1^{0}B}\right)_{sample,corr}}{\left(\frac{1^{11}B}{1^{0}B}\right)_{std-1,corr} + \left(\frac{1^{11}B}{1^{0}B}\right)_{std+1,corr}}{2} \right) \times \left(\frac{1^{11}B}{1^{0}B}\right)_{ref,true}$$

(Eq.S8)

3. Boron concentration in procedural blanks after microsublimation and ion exchange chromatography

Boron concentrations in procedural blanks were determined after four-fold dilution in 0.29 M HF. Determined concentration in each replicate, although typically < LOD, is shown in Table S4.

	Micr	osublimation	n	Chromatography						
	Α	В	С	А	В	С				
Ca ²⁺ solution	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08				
Seawater	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08				
Spinach	< 0.08	< 0.08	0.44	0.50	0.40	0.60				
Silicate glass	< 0.08	< 0.08	< 0.08	0.60	0.40	< 0.08				

Table S4 – B concentration in procedural blank samples after microsublimation and ion exchange chromatography

4. Investigation of correlation between $\delta^{11}B$ offset and B recovery in individual samples

Figure S2 plots δ^{11} B offset against the B recovery for each individual sample. The offset is defined as the difference between the experimentally determined δ^{11} B value and the corresponding reference value. The horizontal lines represent the 0.6 ‰ expanded uncertainty as indicated on the certificate of ERM AE 120, 121 and 122 δ^{11} B reference materials. From the figure, it is clear that within each sample set, no correlation between offset and recovery can be found.

Figure S2 - Scatterplot of $\delta^{11}\text{B}$ offset vs. B recovery in individual samples

4. Reference

[S1] Ishikawa, T., Nagaishi, K., J Anal Atom Spectrom, 2011, 26, 359-365.

[S2] Rosner, M., Pritzkow, W., Vogl, J., Voerkelius, S., Anal Chem, 2011, 83, 2562-2568.

[S3] Tiepolo, M., Bouman, C., Vanucci, R., Schwieters, J., *Applied Geochem*, 2006, **21**(5), 788-801.

[S4] Jochum, K.P., Weis, U., Stoll, B., Kuzmin, D., Yang, Q., Raczek, I., Jacob, D.E., Stracke, A., Birbaum, K., Frick, D.A., Günther, D., Enzweiler, J., *Geostand Geoanal Res*, 2011, **35**(4), 397-429.

[S5] E. J. Catanzaro, C. E. Champion, E.L. Garner, G. Marinenko, K. M. Sappenfield, W. R. Shields. Standard Reference Materials: Boric Acid; Isotopic and Assay Standard Reference Materials. Institute for Materials Research National Bureau of Standards: Washington, DC,1970, p 70.