

**ELECTRONIC SUPPLEMENTARY INFORMATION (ESI)
FOR JOURNAL OF ANALYTICAL ATOMIC SPECTROMETRY**

Natalya B. Ivanenko, Nikolay D. Solovyev, Anatoly A. Ivanenko and
Denis V. Navolotskii

Biological monitoring of arsenic pollution based on whole blood arsenic atomic absorption
assessment with *in situ* hydride trapping

Absorbance profiles for different surface coatings

a)

b)

Fig. 1 Absorbance profiles for individual modifiers for 1000 pg arsenic after *in situ* trapping of AsH_3 . Analytical signals were measured under optimized conditions of both arsenic reduction and absorbance registration. The data are presented as native print-screens from atomic absorption instrument software. Modifiers: *a*) unmodified furnace; *b*) Na_2WO_4 (W); *c*) $\text{Pd}(\text{NO}_3)_2$ (Pd); *d*) H_2PtCl_6 (Pt). Designations (all in relative units): black – corrected absorbance (analytical signal); blue – registered intensity of absorbance line 193.7 nm; red – temperature; green – selective absorbance (for more details on analytical signals in Zeeman modulation polarization spectrometry see S.E. Sholupov and A.A. Ganeyev, *Spectrochim. Acta B*, 1995, **50**, 1227-1236)

Fig. 2 Absorbance profiles for double layer modifiers for 1000 pg arsenic after *in situ* trapping of AsH_3 . Analytical signals were measured under optimized conditions of both arsenic reduction and absorbance registration. The data are presented as native print-screens from atomic absorption instrument software. Modifiers: *a*) $\text{Na}_2\text{WO}_4 - \text{Pd}(\text{NO}_3)_2$ (W-Pd); *b*) $\text{Na}_2\text{WO}_4 - \text{H}_2\text{PtCl}_6$ (W-Pt). Designations are the same as in Fig. 1