Electronic Supplementary Material (ESI) for Journal of Analytical Atomic Spectrometry. This journal is © The Royal Society of Chemistry 2015

Metallothionein isoforms for the selective biosorption and preconcentration of cadmium at ultra-trace level

Ting Yang^a, Lin-Yu Ma^a, Ming-Li Chen^{a*}, Jian-Hua Wang^{a,b*}

^a Research Center for Analytical Sciences, Colleges of Sciences, Box 332, Northeastern University,

Shenyang, 110819, China.

^b Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300071, China

Electronic Supplementary Information

Before performing characterizations, e.g., FT-IR, SEM-EDX and adsorption, the materials were thoroughly washed with diluted nitric acid to remove any of the physically adsorbed proteins.

Figure S1. SEM images of aminated SiO₂ (NH₂@SiO₂), L-cys@SiO₂, rMT@SiO₂ and SmtA@SiO₂.

×1000 magnifications

The change of surface morphology for the three composites (from smooth to rough) illustrates the grafting of L-cys, rMT or SmtA onto SiO₂ particles.

Figure S2. FT-IR spectra of SiO₂, NH₂@SiO₂, L-cys@SiO₂, rMT@SiO₂ and SmtA@SiO₂. The successful amination of SiO₂ can be confirmed by the bending vibration of C-H (2976 cm⁻¹) and the bending vibration of N-H (804 cm⁻¹) originates from APTE in the spectra of NH₂@SiO₂.

As for L-cys@SiO₂, rMT@SiO₂ and SmtA@SiO₂, the new absorption band at 1650 cm⁻¹ corresponds to the amide I (the -C=O stretch of amino acid) and that at 1550 cm⁻¹ is assigned to amide II (the -C-N stretch and -C-N-H deformation), indicating the binding of L-cys, rMT or SmtA onto the surface of SiO₂ pareticles.

Step	Temperature	Ramp	Hold
	/℃	/s	/s
Drying	100	15	10
Pyrolysis	350	15	10
Atomization	1900	1	3
Cleaning	2100	1	3

Table S1. The temperature program for the determination of cadmium with GFAAS

Sample	O(%)	Si (%)	C (%)	N (%)
SiO ₂	76.87	23.13	0	0
NH ₂ @SiO ₂	63.91	20.21	13.46	2.42
L-cys@SiO ₂	55.26	17.86	24.08	2.80
MT(II)@SiO ₂	54.34	13.60	28.86	3.20
SmtA@SiO ₂	47.67	13.78	34.27	4.29

Table S2. Atom% of elements in SiO_2 , $NH_2@SiO_2$, L-cys@SiO₂, MT(II)@SiO₂ and SmtA@SiO₂ samples by SEM-EDX.

The increased C and N content for L-cys@SiO₂, MT(II)@SiO₂ and SmtA@SiO₂ in comparison with SiO₂ and NH₂@SiO₂ can be a clear supplementary evidence comfirming the grafting of Lcysteine and MTs onto SiO₂ particles. In addition, the maximum adsorption capacity of cadmium by NH₂@SiO₂, L-cys@SiO₂, MT(II)@SiO₂ and SmtA@SiO₂ are derived to be 1.80 mg g⁻¹, 3.09 mg g⁻¹, 13.70 mg g⁻¹ and 18.94 mg g⁻¹, respectively, this provide an indirect evidence confirming the immobilization of L-cysteine, SmtA or rMT onto SiO₂ particles.