# Supplementary Material (ESI) for Journal of Materials Chemistry # This journal is © The Royal Society of Chemistry 2001 # CCDC Number: 1145/249 data_Bimidazolium_lead_tetraiodide _audit_creation_method SHELXL-97 _chemical_name_systematic ; ? ; _chemical_name_common ? _chemical_melting_point ? _chemical_formula_moiety 'C6 H8 N4 2+, Pb I4 2-' _chemical_formula_sum 'C6 H8 N4 I4 Pb' _chemical_formula_weight 850.95 loop_ _atom_type_symbol _atom_type_description _atom_type_scat_dispersion_real _atom_type_scat_dispersion_imag _atom_type_scat_source 'C' 'C' 0.0033 0.0016 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 'H' 'H' 0.0000 0.0000 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 'N' 'N' 0.0061 0.0033 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 'I' 'I' -0.4742 1.8119 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 'Pb' 'Pb' -3.3944 10.1111 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' _symmetry_cell_setting Monoclinic _symmetry_space_group_name_H-M C2/c loop_ _symmetry_equiv_pos_as_xyz 'x, y, z' '-x, y, -z+1/2' 'x+1/2, y+1/2, z' '-x+1/2, y+1/2, -z+1/2' '-x, -y, -z' 'x, -y, z-1/2' '-x+1/2, -y+1/2, -z' 'x+1/2, -y+1/2, z-1/2' _cell_length_a 8.7318(7) _cell_length_b 9.5299(8) _cell_length_c 19.3682(16) _cell_angle_alpha 90.00 _cell_angle_beta 99.891(1) _cell_angle_gamma 90.00 _cell_volume 1587.7(2) _cell_formula_units_Z 4 _cell_measurement_temperature 223(2) _cell_measurement_reflns_used 3709 _cell_measurement_theta_min 3.19 _cell_measurement_theta_max 24.42 _exptl_crystal_description 'Thin plate' _exptl_crystal_colour Red _exptl_crystal_size_max 0.35 _exptl_crystal_size_mid 0.25 _exptl_crystal_size_min 0.05 _exptl_crystal_density_diffrn 3.560 _exptl_crystal_density_method 'not measured' _exptl_crystal_F_000 1464 _exptl_absorpt_coefficient_mu 18.384 _exptl_absorpt_correction_type Empirical _exptl_absorpt_correction_T_min 0.0875 _exptl_absorpt_correction_T_max 0.5245 _exptl_absorpt_process_details ? _publ_section_experimental ; All measurements were made with a Siemens SMART platform diffractometer equipped with a 1K CCD area detector. A hemisphere of data (1271 frames at 5 cm detector distance) was collected using a narrow-frame method with scan widths of 0.30\% in omega an an exposure time of 20 s/frame. The first 50 frames were re-measured at the end of data collection to monitor instrument and crystal stability, and the maximum correction on I was <1%. The data were integrated using the Siemens SAINT program, with the intensities corrected for Lorentz factor, polarization, air absorption, and absorption due to variation in the path length through the detector faceplate. A psi scan absorption correction was applied based on the entire data set. Redundant reflections were averaged. Final cell constants were refined using 3709 reflections having I>10\s(I), and these, along with other information pertinent to data collection and refinement, are listed in Table 1. The Laue symmetry was determined to be 2/m, and from the systematic absences noted the space group was shown to be either Cc or C2/c. The hydrogen atom attached to N5 could not be located in the difference map, and was therefore positioned ideally. Acknowledgment for use of MRSEC/TCSUH Facilities: This work made use of MRSEC/TCSUH Shared Experimental Facilities supported by the National Science Foundation under Award Number DMR-9632667 and the Texas Center for Superconductivity at the University of Houston. ; _publ_section_figure_captions ; Fig. 1 -- View of the molecules showing the atom numbering scheme. Thermal ellipsoids are 40% equiprobability envelopes, with hydrogens as spheres of arbitrary diameter. The complete coordination about Pb is included. Fig. 2 -- View of the stacking of the layers along c, with hydrogen bonds indicated by dashed lines. Fig. 3 -- Packing of the molecules in the unit cell. ; _diffrn_ambient_temperature 223(2) _diffrn_radiation_wavelength 0.71073 _diffrn_radiation_type MoK\a _diffrn_radiation_source 'fine-focus sealed tube' _diffrn_radiation_monochromator graphite _diffrn_measurement_device_type 'Siemens SMART CCD' _diffrn_measurement_method CCD _diffrn_detector_area_resol_mean 1K _diffrn_standards_decay_% 0.0 _diffrn_reflns_number 3972 _diffrn_reflns_av_R_equivalents 0.0495 _diffrn_reflns_av_sigmaI/netI 0.0362 _diffrn_reflns_limit_h_min -10 _diffrn_reflns_limit_h_max 9 _diffrn_reflns_limit_k_min 0 _diffrn_reflns_limit_k_max 11 _diffrn_reflns_limit_l_min 0 _diffrn_reflns_limit_l_max 22 _diffrn_reflns_theta_min 3.19 _diffrn_reflns_theta_max 24.42 _reflns_number_total 1389 _reflns_number_gt 1262 _reflns_threshold_expression >4sigma(I) _computing_data_collection 'Siemens SMART software (Siemens, 1996)' _computing_cell_refinement 'Siemens SAINT software (Siemens, 1996)' _computing_data_reduction 'Siemens SAINT software (Siemens, 1996)' _computing_structure_solution 'SHELXS-97 (Sheldrick, 1990)' _computing_structure_refinement 'SHELXL-97 (Sheldrick, 1997)' _computing_molecular_graphics ? _computing_publication_material ? _refine_special_details ; Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > 4sigma(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. ; _refine_ls_structure_factor_coef Fsqd _refine_ls_matrix_type full _refine_ls_weighting_scheme calc _refine_ls_weighting_details 'calc w=1/[\s^2^(Fo^2^)+(0.0368P)^2^+8.1527P] where P=(Fo^2^+2Fc^2^)/3' _atom_sites_solution_primary direct _atom_sites_solution_secondary difmap _atom_sites_solution_hydrogens geom _refine_ls_hydrogen_treatment mixed _refine_ls_extinction_method SHELXL _refine_ls_extinction_coef 0.00133(8) _refine_ls_extinction_expression 'Fc^*^=kFc[1+0.001xFc^2^\l^3^/sin(2\q)]^-1/4^' _refine_ls_number_reflns 1309 _refine_ls_number_parameters 75 _refine_ls_number_restraints 0 _refine_ls_R_factor_all 0.0257 _refine_ls_R_factor_gt 0.0243 _refine_ls_wR_factor_ref 0.0702 _refine_ls_wR_factor_gt 0.0686 _refine_ls_goodness_of_fit_ref 1.169 _refine_ls_restrained_S_all 1.169 _refine_ls_shift/su_max 0.020 _refine_ls_shift/su_mean 0.003 loop_ _atom_site_label _atom_site_type_symbol _atom_site_fract_x _atom_site_fract_y _atom_site_fract_z _atom_site_U_iso_or_equiv _atom_site_adp_type _atom_site_occupancy _atom_site_symmetry_multiplicity _atom_site_calc_flag _atom_site_refinement_flags _atom_site_disorder_assembly _atom_site_disorder_group Pb Pb 0.0000 0.63941(3) 0.2500 0.02300(17) Uani 1 2 d S . . I1 I 0.07784(6) 0.64754(4) 0.41849(2) 0.02999(18) Uani 1 1 d . . . I2 I 0.24563(4) 0.91025(5) 0.24499(2) 0.03339(18) Uani 1 1 d . . . C1 C 0.3014(8) 0.2843(7) 0.5275(4) 0.0269(13) Uani 1 1 d . . . N2 N 0.3238(7) 0.4231(6) 0.5348(3) 0.0338(13) Uani 1 1 d . . . H2 H 0.278(12) 0.490(11) 0.513(6) 0.07(3) Uiso 1 1 d . . . C3 C 0.4286(9) 0.4502(8) 0.5936(4) 0.0362(16) Uani 1 1 d . . . H3 H 0.4620 0.5392 0.6110 0.043 Uiso 1 1 calc R . . C4 C 0.4759(10) 0.3255(8) 0.6223(5) 0.0401(17) Uani 1 1 d . . . H4 H 0.5503 0.3103 0.6629 0.048 Uiso 1 1 calc R . . N5 N 0.3943(7) 0.2254(6) 0.5809(3) 0.0310(12) Uani 1 1 d . . . H5 H 0.4022 0.1355 0.5886 0.07(4) Uiso 1 1 calc R . . loop_ _atom_site_aniso_label _atom_site_aniso_U_11 _atom_site_aniso_U_22 _atom_site_aniso_U_33 _atom_site_aniso_U_23 _atom_site_aniso_U_13 _atom_site_aniso_U_12 Pb 0.0228(2) 0.0208(2) 0.0253(2) 0.000 0.00376(15) 0.000 I1 0.0412(3) 0.0232(3) 0.0250(3) 0.00191(14) 0.0043(2) 0.00609(16) I2 0.0265(3) 0.0299(3) 0.0432(3) 0.00623(18) 0.0042(2) -0.00691(16) C1 0.026(3) 0.022(3) 0.034(3) 0.004(3) 0.009(3) 0.003(2) N2 0.040(3) 0.020(3) 0.039(3) 0.003(3) -0.002(3) 0.003(2) C3 0.034(4) 0.029(3) 0.042(4) -0.003(3) -0.003(3) 0.000(3) C4 0.043(5) 0.029(3) 0.044(4) 0.003(3) -0.005(3) 0.000(3) N5 0.044(3) 0.020(3) 0.027(3) 0.000(2) -0.003(2) 0.005(2) _geom_special_details ; All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. ; loop_ _geom_bond_atom_site_label_1 _geom_bond_atom_site_label_2 _geom_bond_distance _geom_bond_site_symmetry_2 _geom_bond_publ_flag Pb I2 3.1045(5) 3_445 ? Pb I2 3.1045(5) 4_545 ? Pb I1 3.2179(5) 2 ? Pb I1 3.2179(5) . ? Pb I2 3.3679(5) . ? Pb I2 3.3679(5) 2 ? I2 Pb 3.1045(5) 3 ? C1 N5 1.325(9) . ? C1 N2 1.341(10) . ? C1 C1 1.428(14) 7_556 ? N2 C3 1.358(10) . ? C3 C4 1.347(11) . ? C4 N5 1.365(10) . ? loop_ _geom_angle_atom_site_label_1 _geom_angle_atom_site_label_2 _geom_angle_atom_site_label_3 _geom_angle _geom_angle_site_symmetry_1 _geom_angle_site_symmetry_3 _geom_angle_publ_flag I2 Pb I2 90.592(19) 3_445 4_545 ? I2 Pb I1 87.700(12) 3_445 2 ? I2 Pb I1 94.242(12) 4_545 2 ? I2 Pb I1 94.242(12) 3_445 . ? I2 Pb I1 87.700(12) 4_545 . ? I1 Pb I1 177.244(16) 2 . ? I2 Pb I2 173.687(17) 3_445 . ? I2 Pb I2 94.834(7) 4_545 . ? I1 Pb I2 88.680(11) 2 . ? I1 Pb I2 89.207(12) . . ? I2 Pb I2 94.834(7) 3_445 2 ? I2 Pb I2 173.687(17) 4_545 2 ? I1 Pb I2 89.207(12) 2 2 ? I1 Pb I2 88.680(11) . 2 ? I2 Pb I2 79.942(17) . 2 ? Pb I2 Pb 173.687(17) 3 . ? N5 C1 N2 106.1(6) . . ? N5 C1 C1 127.6(7) . 7_556 ? N2 C1 C1 126.3(8) . 7_556 ? C1 N2 C3 109.9(6) . . ? C4 C3 N2 107.0(6) . . ? C3 C4 N5 106.4(7) . . ? C1 N5 C4 110.5(6) . . ? loop_ _geom_torsion_atom_site_label_1 _geom_torsion_atom_site_label_2 _geom_torsion_atom_site_label_3 _geom_torsion_atom_site_label_4 _geom_torsion _geom_torsion_site_symmetry_1 _geom_torsion_site_symmetry_2 _geom_torsion_site_symmetry_3 _geom_torsion_site_symmetry_4 _geom_torsion_publ_flag I2 Pb I2 Pb 179.999(1) 3_445 . . 3 ? I2 Pb I2 Pb -30.84(14) 4_545 . . 3 ? I1 Pb I2 Pb -124.98(15) 2 . . 3 ? I1 Pb I2 Pb 56.79(15) . . . 3 ? I2 Pb I2 Pb 145.59(16) 2 . . 3 ? N5 C1 N2 C3 -1.1(7) . . . . ? C1 C1 N2 C3 179.3(8) 7_556 . . . ? C1 N2 C3 C4 1.8(9) . . . . ? N2 C3 C4 N5 -1.8(9) . . . . ? N2 C1 N5 C4 0.0(8) . . . . ? C1 C1 N5 C4 179.6(8) 7_556 . . . ? C3 C4 N5 C1 1.1(9) . . . . ? loop_ _geom_hbond_atom_site_label_D _geom_hbond_atom_site_label_H _geom_hbond_atom_site_label_A _geom_hbond_distance_DH _geom_hbond_distance_HA _geom_hbond_distance_DA _geom_hbond_angle_DHA _geom_hbond_site_symmetry_A N2 H2 I1 0.83(11) 2.75(11) 3.549(6) 163(9) . N5 H5 I1 0.87 2.71 3.562(5) 167.4 7_556 _diffrn_measured_fraction_theta_max 0.992 _diffrn_reflns_theta_full 24.42 _diffrn_measured_fraction_theta_full 0.992 _refine_diff_density_max 1.135 _refine_diff_density_min -1.282 _refine_diff_density_rms 0.216 #===END data_Biimidazolium_tin_tetraiodide _audit_creation_method SHELXL _chemical_name_systematic ; ? ; _chemical_name_common ? _chemical_formula_moiety ? _chemical_formula_structural ? _chemical_formula_analytical ? _chemical_formula_sum 'C6 H8 I4 N4 Sn' _chemical_formula_weight 762.45 _chemical_melting_point ? _chemical_compound_source ? loop_ _atom_type_symbol _atom_type_description _atom_type_scat_dispersion_real _atom_type_scat_dispersion_imag _atom_type_scat_source 'C' 'C' 0.0033 0.0016 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 'H' 'H' 0.0000 0.0000 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 'N' 'N' 0.0061 0.0033 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 'Sn' 'Sn' -0.6537 1.4246 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 'I' 'I' -0.4742 1.8119 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' _symmetry_cell_setting ? _symmetry_space_group_name_H-M ? loop_ _symmetry_equiv_pos_as_xyz 'x, y, z' '-x, y, -z+1/2' 'x+1/2, y+1/2, z' '-x+1/2, y+1/2, -z+1/2' '-x, -y, -z' 'x, -y, z-1/2' '-x+1/2, -y+1/2, -z' 'x+1/2, -y+1/2, z-1/2' _cell_length_a 8.7238(8) _cell_length_b 9.5695(9) _cell_length_c 19.288(2) _cell_angle_alpha 90.00 _cell_angle_beta 100.180(2) _cell_angle_gamma 90.00 _cell_volume 1584.9(3) _cell_formula_units_Z 4 _cell_measurement_temperature 293(2) _cell_measurement_reflns_used ? _cell_measurement_theta_min ? _cell_measurement_theta_max ? _exptl_crystal_description ? _exptl_crystal_colour ? _exptl_crystal_size_max ? _exptl_crystal_size_mid ? _exptl_crystal_size_min ? _exptl_crystal_density_meas ? _exptl_crystal_density_diffrn 3.195 _exptl_crystal_density_method ? _exptl_crystal_F_000 1336 _exptl_absorpt_coefficient_mu 9.384 _exptl_absorpt_correction_type ? _exptl_absorpt_correction_T_min ? _exptl_absorpt_correction_T_max ? _exptl_special_details ; ? ; _diffrn_ambient_temperature 293(2) _diffrn_radiation_wavelength 0.71073 _diffrn_radiation_type MoK\a _diffrn_radiation_source 'fine-focus sealed tube' _diffrn_radiation_monochromator graphite _diffrn_measurement_device ? _diffrn_measurement_method ? _diffrn_standards_number ? _diffrn_standards_interval_count ? _diffrn_standards_interval_time ? _diffrn_standards_decay_% ? _diffrn_reflns_number 3466 _diffrn_reflns_av_R_equivalents 0.0333 _diffrn_reflns_av_sigmaI/netI 0.0348 _diffrn_reflns_limit_h_min -9 _diffrn_reflns_limit_h_max 8 _diffrn_reflns_limit_k_min -10 _diffrn_reflns_limit_k_max 10 _diffrn_reflns_limit_l_min -19 _diffrn_reflns_limit_l_max 21 _diffrn_reflns_theta_min 2.15 _diffrn_reflns_theta_max 23.29 _reflns_number_total 1147 _reflns_number_observed 1068 _reflns_observed_criterion >2sigma(I) _computing_data_collection ? _computing_cell_refinement ? _computing_data_reduction ? _computing_structure_solution 'SHELXS-86 (Sheldrick, 1990)' _computing_structure_refinement 'SHELXL-93 (Sheldrick, 1993)' _computing_molecular_graphics ? _computing_publication_material ? _refine_special_details ; Refinement on F^2^ for ALL reflections except for 0 with very negative F^2^ or flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The observed criterion of F^2^ > 2sigma(F^2^) is used only for calculating _R_factor_obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. ; _refine_ls_structure_factor_coef Fsqd _refine_ls_matrix_type full _refine_ls_weighting_scheme 'calc w=1/[\s^2^(Fo^2^)+(0.0193P)^2^+9.2319P] where P=(Fo^2^+2Fc^2^)/3' _atom_sites_solution_primary direct _atom_sites_solution_secondary difmap _atom_sites_solution_hydrogens geom _refine_ls_hydrogen_treatment ? _refine_ls_extinction_method SHELXL _refine_ls_extinction_coef 0.00161(8) _refine_ls_extinction_expression 'Fc^*^=kFc[1+0.001xFc^2^\l^3^/sin(2\q)]^-1/4^' _refine_ls_number_reflns 1147 _refine_ls_number_parameters 70 _refine_ls_number_restraints 0 _refine_ls_R_factor_all 0.0261 _refine_ls_R_factor_obs 0.0231 _refine_ls_wR_factor_all 0.0555 _refine_ls_wR_factor_obs 0.0543 _refine_ls_goodness_of_fit_all 1.047 _refine_ls_goodness_of_fit_obs 1.064 _refine_ls_restrained_S_all 1.047 _refine_ls_restrained_S_obs 1.064 _refine_ls_shift/esd_max -0.001 _refine_ls_shift/esd_mean 0.000 loop_ _atom_site_label _atom_site_type_symbol _atom_site_fract_x _atom_site_fract_y _atom_site_fract_z _atom_site_U_iso_or_equiv _atom_site_thermal_displace_type _atom_site_occupancy _atom_site_calc_flag _atom_site_refinement_flags _atom_site_disorder_group Sn Sn 0.0000 0.36710(6) 0.2500 0.0196(2) Uani 1 d S . I1 I -0.24576(4) 0.57722(4) 0.24716(2) 0.0301(2) Uani 1 d . . I2 I -0.07704(5) 0.35416(4) 0.08218(2) 0.0267(2) Uani 1 d . . N1 N -0.1768(6) 0.9233(5) 0.0343(3) 0.0276(12) Uani 1 d . . H1A H -0.2234(6) 0.9852(5) 0.0058(3) 0.033 Uiso 1 calc R . N2 N -0.1034(6) 0.7269(5) 0.0812(2) 0.0291(12) Uani 1 d . . H2A H -0.0942(6) 0.6385(5) 0.0889(2) 0.035 Uiso 1 calc R . C1 C -0.1969(7) 0.7846(6) 0.0274(3) 0.0210(12) Uani 1 d . . C2 C -0.0236(8) 0.8276(7) 0.1226(4) 0.033(2) Uani 1 d . . H2B H 0.0495(8) 0.8127(7) 0.1633(4) 0.040 Uiso 1 calc R . C3 C -0.0691(8) 0.9512(7) 0.0945(3) 0.0312(15) Uani 1 d . . loop_ _atom_site_aniso_label _atom_site_aniso_U_11 _atom_site_aniso_U_22 _atom_site_aniso_U_33 _atom_site_aniso_U_23 _atom_site_aniso_U_13 _atom_site_aniso_U_12 Sn 0.0208(3) 0.0156(3) 0.0223(3) 0.000 0.0037(2) 0.000 I1 0.0246(3) 0.0258(3) 0.0393(3) -0.0069(2) 0.0038(2) 0.0055(2) I2 0.0388(3) 0.0186(2) 0.0224(3) 0.0015(2) 0.0041(2) 0.0055(2) N1 0.029(3) 0.020(3) 0.032(3) 0.003(2) -0.003(2) -0.001(2) N2 0.042(3) 0.013(3) 0.032(3) 0.004(2) 0.007(3) 0.006(2) C1 0.023(3) 0.017(3) 0.025(3) 0.007(2) 0.008(2) 0.004(2) C2 0.033(4) 0.028(4) 0.033(3) -0.002(3) -0.008(3) 0.000(3) C3 0.035(4) 0.033(4) 0.025(3) -0.001(3) 0.005(3) 0.001(3) _geom_special_details ; All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. ; loop_ _geom_bond_atom_site_label_1 _geom_bond_atom_site_label_2 _geom_bond_distance _geom_bond_site_symmetry_2 _geom_bond_publ_flag Sn I1 2.9328(6) 2 ? Sn I1 2.9328(6) . ? Sn I2 3.1900(4) 2 ? Sn I2 3.1900(4) . ? N1 C1 1.343(8) . ? N1 C3 1.385(8) . ? N2 C1 1.322(7) . ? N2 C2 1.362(8) . ? C1 C1 1.438(12) 7_465 ? C2 C3 1.332(9) . ? loop_ _geom_angle_atom_site_label_1 _geom_angle_atom_site_label_2 _geom_angle_atom_site_label_3 _geom_angle _geom_angle_site_symmetry_1 _geom_angle_site_symmetry_3 _geom_angle_publ_flag I1 Sn I1 93.43(2) 2 . ? I1 Sn I2 89.166(12) 2 2 ? I1 Sn I2 93.885(12) . 2 ? I1 Sn I2 93.885(12) 2 . ? I1 Sn I2 89.166(12) . . ? I2 Sn I2 175.55(2) 2 . ? C1 N1 C3 109.3(5) . . ? C1 N2 C2 110.2(5) . . ? N2 C1 N1 106.5(5) . . ? N2 C1 C1 127.8(6) . 7_465 ? N1 C1 C1 125.7(6) . 7_465 ? C3 C2 N2 107.8(6) . . ? C2 C3 N1 106.2(6) . . ? _refine_diff_density_max 0.670 _refine_diff_density_min -0.562 _refine_diff_density_rms 0.160 #===END