Supplementary materials

Liquid crystalline cyclic tetramethyltetrasiloxanes containing coumarin moieties

Yanqing Tian,^{a,*} Eiichi Akiyama^b and Yu Nagase ^c

^a Sagami Chemical Research Center, 2743-1 Hayakawa, Ayase, Kanagawa 252-1193, Japan

^b Technology Research Center, Ebara Research Co., Ltd., 4-2-1 Honfujisawa, Fujisawa,

Kanagawa 251-8502, Japan

^c Department of Applied Chemistry, School of Engineering, Tokai University, 1117 Kitakaname, Hiratsuka, Kanagawa 259-1292, Japan Characterization of dialkyl malonates (3)

Dihexyl malonate (**3**, n=6). Yield: 94%. ¹H-NMR (ppm, CDCl₃): $\delta = 0.89$ (6H, t, CH₃), 1.21 ~ 1.46 (12H, m, -CH₂CH₂CH₂-), 1.52 ~ 1.78 (4H, m, -CH₂-), 3.36 (2H, s, OOCCH₂COO), 4.14 (4H, t, OCH₂).

Diheptyl malonate (**3**, n=7). Yield: 91%. ¹H-NMR (ppm, DCl₃): $\delta = 0.89$ (6H, t, CH₃), 1.18 ~ 1.49 (16H, m, -CH₂CH₂CH₂CH₂-), 1.52 ~ 1.79 (4H, m, -CH₂-), 3.36 (2H, s, OOCCH₂COO), 4.14 (4H, t, -OCH₂-).

Dioctyl malonate (**3**, n=8). Yield: 95%. ¹H-NMR (ppm, CDCl₃): $\delta = 0.89$ (6H, t, CH₃), 1.1 ~ 1.54 (20H, m, -CH₂CH₂CH₂CH₂CH₂-), 1.54 ~ 1.78 (4H, m, -CH₂-), 3.36 (2H, s, OOCCH₂COO), 4.14 (4H, t, OCH₂).

Characterization of alkyl 7-hydroxy-coumarin-3-carboxylate (4)

Ethyl 7-hydroxy-coumarin-3-carboxylate (4, n=2). Yield: 58%. ¹H-NMR (ppm, DMSO): $\delta = 1.35$ (3H, t, CH₃), 4.33 (2H, t, OCH₂), 6.79 (1H, d, phenyl), 6.95 (1H, m, phenyl), 7.75 (1H, d, phenyl), 8.59 (1H, s, -CH=).

Propyl 7-*hydroxy-coumarin-3-carboxylate* (4, n=3). Yield: 35%. ¹H-NMR (ppm, DMSO): $\delta = 0.98$ (3H, t, CH₃), 1.67 ~ 1.81 (2H, m, -CH₂-), 4.19 (2H, t, OCH₂), 6.79 (1H, d, phenyl), 6.95 (1H, m, phenyl), 7.75 (1H, d, phenyl), 8.61 (1H, s, -CH=).

Butyl 7-*hydroxy-coumarin-3-carboxylate* (4, n=4). Yield: 39%. ¹H-NMR (ppm, CD₃COCD₃): $\delta = 0.98$ (3H, t, CH₃), 1.37 ~ 1.52 (2H, m, -CH₂-), 1.67 ~ 1.81 (2H, m, -CH₂-), 4.29 (2H, t, OCH₂), 6.79 (1H, d, phenyl), 6.95 (1H, m, phenyl), 7.75 (1H, d, phenyl), 8.61 (1H, s, -CH=).

Pentyl 7-hydroxy-coumarin-3-carboxylate (4, n=5). Yield: 32%. ¹H-NMR (ppm, CDCl₃): $\delta = 0.90$ (3H, t, CH₃), 1.35 ~1.77 (6H, m, -CH₂-), 4.33 (2H, t, OCH₂), 6.93 (1H, m, phenyl), 6.95 (1H, d, phenyl), 7.50 (1H, d, phenyl), 7.71 (1H, br, OH), 8.53 (1H, s, -CH=).

Hexyl 7-hydroxy-coumarin-3-carboxylate (4, n=6). Yield: 33%. ¹H-NMR (ppm, CDCl₃): $\delta = 0.90$ (3H, t, CH₃), 1.3 ~1.77 (8H, m, -CH₂-), 4.33 (2H, t, OCH₂), 6.93 (1H, m, phenyl), 6.95 (1H, d, phenyl), 7.50 (1H, d, phenyl), 7.71 (1H, br s, OH), 8.54 (1H, s, -CH=).

Heptyl 7-*hydroxy-coumarin-3-carboxylate* (4, n=7). Yield: 36%. ¹H-NMR (ppm, CDCl₃): $\delta = 0.88$ (3H, t, CH₃), 1.28 ~ 1.77 (10H, m, -CH₂-), 4.33 (2H, t, OCH₂), 6.93 (1H, m, phenyl), 6.95 (1H, d, phenyl), 7.50 (1H, d, phenyl), 7.70 (1H, br, OH), 8.53 (1H, s, -CH=).

Octyl 7-hydroxy-coumarin-3-carboxylate (4, n=8). Yield: 40%. ¹H-NMR (ppm, CDCl₃): $\delta = 0.88$ (3H, t, CH₃), 1.28 ~ 1.77 (12H, m, -CH₂-), 4.33 (2H, t, OCH₂), 6.93 (1H, m, phenyl), 6.95 (1H, d, phenyl), 7.50 (1H, d, phenyl), 7.70 (1H, br, OH), 8.54 (1H, s, -CH=).

Characterization of vinyl terminated molecules with coumarin units (V)

Methyl 7-[4-(pent-4-eneoxy)benzoyloxy]-coumarin-3-carboxylate (**V1**). Yield: 78%. ¹H-NMR (ppm, CDCl₃): $\delta = 1.82 \sim 2.40$ (4H, m, CH₂), 3.97 (3H, s, CH₃), 4.08 (2H, t, OCH₂), 5.05(2H, m, CH₂=), 5.86 (1H, m, =CH-), 6.98 (2H, d, phenyl), 7.23 (2H, m, phenyl), 7.66 (1H, d, phenyl), 8.14 (2H, m, phenyl), 8.59 (1H, s, -CH=). Elemental analysis: Calc. for C₂₃H₂₀O₇ : C, 67.64; H, 4.94 percent. Found: C, 67.65; H, 4.73 percent. *Ethyl 7-[4-(pent-4-eneoxy)benzoyloxy]-coumarin-3-carboxylate* (**V2**). Yield: 60%. ¹H-

NMR (ppm, CDCl₃): $\delta = 1.39$ (3H, t, CH₃), 1.82 ~ 2.40 (4H, m, CH₂), 4.08 (2H, t, CH₂), 4.42 (2H, t, COOCH₂), 5.05(2H, m, CH₂=), 5.86 (1H, m, =CH-), 6.98 (2H, d, phenyl), 7.23 (2H, m, phenyl), 7.66 (1H, d, phenyl), 8.14 (2H, m, phenyl), 8.55 (1H, s, -CH=). Elemental analysis: Calc. for C₂₄H₂₂O₇ : C, 68.23; H, 5.25 percent. Found: C, 68.28; H, 5.25 percent.

Propyl 7-[4-(pent-4-eneoxy)benzoyloxy]-coumarin-3-carboxylate (**V3**). Yield: 89%. ¹H-NMR (ppm, CDCl₃): δ = 1.04 (3H, t, CH₃), 1.92 ~ 2.42 (4H, m, CH₂), 4.08 (2H, t, CH₂), 4.42 (2H, t, COOCH₂), 5.05(2H, m, CH₂=), 5.86 (1H, m, =CH-), 6.98 (2H, d, phenyl), 7.23 (2H, m, phenyl), 7.66 (1H, d, phenyl), 8.14 (2H, m, phenyl), 8.53 (1H, s, -CH=). Elemental analysis: Calc. for C₂₅H₂₄O₇ : C, 68.79; H, 5.54 percent. Found: C, 68.99; H, 5.42 percent.

Butyl 7-[4-(pent-4-eneoxy)benzoyloxy]-coumarin-3-carboxylate (V4). Yield: 63%. ¹H-NMR (ppm, CDCl₃): $\delta = 0.99$ (3H, t, CH₃), 1.32 ~ 2.40 (6H, m, CH₂), 4.08 (2H, t, CH₂), 4.36 (2H, t, COOCH₂), 5.05(2H, m, CH₂=), 5.86 (1H, m, =CH-), 6.98 (2H, d, phenyl), 7.23 (2H, m, phenyl), 7.66 (1H, d, phenyl), 8.14 (2H, m, phenyl), 8.53 (1H, s, -CH=).

Elemental analysis: Calc. for $C_{26}H_{26}O_7$: C, 69.32; H, 5.81 percent. Found: C, 69.51; H, 5.66 percent.

Pentyl 7-[4-(*pent-4-eneoxy*)*benzoyloxy*]-*coumarin-3-carboxylate* (**V5**). Yield: 69%. ¹H-NMR (ppm, CDCl₃): $\delta = 0.89$ (3H, t, CH₃), 1.4 (4H, m, (CH₂)₂), 1.85 (2H, m, CH₂), 1.93 (2H, m, CH₂), 2.26 (2H, m, CH₂), 4.08 (2H, t, OCH₂), 4.35 (2H, t, COOCH₂), 5.05(2H, m, CH₂=), 5.85 (1H, m, =CH-), 6.98 (2H, d, phenyl), 7.22 (2H, m, phenyl), 7.65 (1H, d, phenyl), 8.16 (2H, m, phenyl), 8.53 (1H, s, -CH=). Elemental analysis: Calc. for C₂₇H₂₈O₇: C, 69.81; H, 6.08 percent. Found: C, 70.02; H, 6.00 percent.

Hexyl 7-[4-(*pent-4-eneoxy*)*benzoyloxy*]-*coumarin-3-carboxylate* (V6). Yield: 63%. ¹H-NMR (ppm, CDCl₃): δ = 0.91 (3H, t, CH₃), 1.3 ~ 1.5 (6H, m, (CH₂)₃), 1.85 (2H, m, CH₂), 1.93 (2H, m, CH₂), 2.26 (2H, m, CH₂), 4.08 (2H, t, OCH₂), 4.35 (2H, t, COOCH₂), 5.05(2H, m, CH₂=), 5.85 (1H, m, =CH-), 6.98 (2H, d, phenyl), 7.22 (2H, m, phenyl), 7.65 (1H, d, phenyl), 8.16 (2H, m, phenyl), 8.53 (1H, s, -CH=). Elemental analysis: Calc. for C₂₈H₃₀O₇ : C, 70.27; H, 6.32 percent. Found: C, 70.50; H, 6.34 percent.

Heptyl 7-[4-(*pent-4-eneoxy*)*benzoyloxy*]-*coumarin-3-carboxylate* (V7). Yield: 70%. ¹H-NMR (ppm, CDCl₃): $\delta = 0.89$ (3H, t, CH₃), 1.2 ~ 1.5 (8H, m, (CH₂)₄), 1.80 (2H, m, CH₂), 1.95 (2H, m, CH₂), 2.29 (2H, m, CH₂), 4.08 (2H, t, OCH₂), 4.35 (2H, t, COOCH₂), 5.05(2H, m, CH₂=), 5.85 (1H, m, =CH-), 6.98 (2H, d, phenyl), 7.22 (2H, m, phenyl), 7.65 (1H, d, phenyl), 8.16 (2H, m, phenyl), 8.53 (1H, s, -CH=). Elemental analysis: Calc. for C₂₉H₃₂O₇ : C, 70.71; H, 6.55 percent. Found: C, 70.88; H, 6.52 percent.

Octyl 7-[4-(*pent-4-eneoxy*)*benzoyloxy*]-*coumarin-3-carboxylate* (**V8**). Yield: 75%. ¹H-NMR (ppm, CDCl₃): δ = 0.89 (3H, t, CH₃), 1.2 ~ 1.5 (10H, m, (CH₂)₅), 1.85 (2H, m, CH₂), 1.93 (2H, m, CH₂), 2.26 (2H, m, CH₂), 4.08 (2H, t, OCH₂), 4.35 (2H, t, COOCH₂), 5.05(2H, m, CH₂=), 5.85 (1H, m, =CH-), 6.98 (2H, d, phenyl), 7.22 (2H, m, phenyl), 7.65 (1H, d, phenyl), 8.16 (2H, m, phenyl), 8.53 (1H, s, -CH=). Elemental analysis: Calc. for C₃₀H₃₄O₇: C, 71.12; H, 6.76 percent. Found: C, 71.11; H, 6.86 percent.

Characterization of cyclic tetramethyltetrasiloxanes with coumarin moieties (**CS**) *CS1*. Yield: 20.3%. ¹H-NMR (ppm, CDCl₃): $\delta = 0.11$ (12H, br s, SiCH₃), 0.59 (8H, br m, SiCH₂-), 1.41~1.52 (16H, m, -CH₂CH₂-), 1.67~ 1.95 (8H, m, -CH₂-), 4.02 (12H, s, COOCH₃), 4.11 (8H, m, OCH₂), 6.94 (8H, br m, phenyl), 7.22 (8H, br m, phenyl), 7.66 (4H, d, phenyl), 8.10 (8H, m, phenyl), 8.56 (4H, s, -CH=). IR (KBr disk, cm⁻¹): 1763, 1732, 1703 (carbonyl, esters). Elemental analysis: Calc. for C₉₆H₉₆O₃₂Si₄ : C, 61.52; H, 5.16 percent. Found: C, 61.29; H, 5.15 percent.

CS2. Yield: 36.5%. ¹H-NMR (ppm, CDCl₃): $\delta = 0.11$ (12H, br s, SiCH₃), 0.59 (8H, br m, SiCH₂-), 1.41~1.88 (36H, m, -CH₂CH₂CH₂- and CH₃), 4.03 (8H, br m, OCH₂), 4.38 (8H, q, COOCH₂), 6.92 (8H, br m, phenyl), 7.22 (8H, br m, phenyl), 7.65 (4H, d, phenyl), 8.06 (8H, m, phenyl), 8.52 (4H, s, -CH=). IR (KBr disk, cm⁻¹): 1763, 1732, 1705 (carbonyl, esters). Elemental analysis: Calc. for C₁₀₀H₁₀₄O₃₂Si₄: C, 62.22; H, 5.43 percent. Found: C, 62.17; H, 5.47 percent.

CS3. Yield: 34.5%. ¹H-NMR (ppm, CDCl₃): $\delta = 0.11$ (12H, br s, SiCH₃), 0.59 (8H, br m, SiCH₂-), 1.15 (12H, t, CH₃), 1.62~1.96 (32H, m, -CH₂CH₂CH₂- and -CH₂-), 4.03 (8H, br m, OCH₂), 4.38 (8H, t, COOCH₂), 6.92 (8H, br m, phenyl), 7.22 (8H, br m, phenyl), 7.65 (4H, d, phenyl), 8.06 (8H, br m, phenyl), 8.63 (4H, s, -CH=). IR (KBr disk, cm⁻¹): 1763, 1732, 1705 (carbonyl, esters). Elemental analysis: Calc. for C₁₀₄H₁₁₂O₃₂Si₄ : C, 62.88; H, 5.68 percent. Found: C, 62.81; H, 5.81 percent.

CS4. Yield: 27.5%. ¹H-NMR (ppm, CDCl₃): $\delta = 0.11$ (12H, br s, SiCH₃), 0.59 (8H, br m, SiCH₂-), 0.98 (12H, t, CH₃), 1.43~1.85 (40H, m, -CH₂CH₂CH₂- and -CH₂CH₂-), 4.03 (8H, br m, OCH₂), 4.38 (8H, t, COOCH₂), 6.92 (8H, br m, phenyl), 7.22 (8H, br m, phenyl), 7.65 (4H, d, phenyl), 8.06 (8H, br m, phenyl), 8.50 (4H, s, -CH=). IR (KBr disk, cm⁻¹): 1763, 1732, 1705 (carbonyl, esters). Elemental analysis: Calc. for C₁₀₈H₁₂₀O₃₂Si₄: C, 63.51; H, 5.92 percent. Found: C, 63.69; H, 6.02 percent.

CS5. Yield: 24.8%. ¹H-NMR (ppm, CDCl₃): $\delta = 0.11$ (12H, br s, SiCH₃), 0.59 (8H, br m, SiCH₂-), 0.92 (12H, t, CH₃), 1.3 ~1.84 (48H, m, -CH₂CH₂CH₂- and -CH₂CH₂CH₂-), 4.04 (8H, br m, OCH₂), 4.34 (8H, t, COOCH₂), 6.95 (8H, br m, phenyl), 7.24 (8H, br m, phenyl), 7.65 (4H, d, phenyl), 8.11 (8H, m, phenyl), 8.53 (4H, s, -CH=). IR (KBr disk, cm⁻¹): 1763, 1736, 1704 (carbonyl, esters). Elemental analysis: Calc. for C₁₁₂H₁₂₈O₃₂Si₄: C, 64.09; H, 6.14 percent. Found: C, 64.37; H, 6.25 percent.

CS6. Yield: 25.3%. ¹H-NMR (ppm, CDCl₃): $\delta = 0.11$ (12H, br s, SiCH₃), 0.59 (8H, br m, SiCH₂-), 0.92 (12H, t, CH₃), 1.3 ~1.84 (56H, m, -CH₂CH₂CH₂-, and -CH₂CH₂CH₂-), 4.04 (8H, br m, OCH₂), 4.34 (8H, t, COOCH₂), 6.95 (8H, br m,

phenyl), 7.24 (8H, br m, phenyl), 7.65 (4H, d, phenyl), 8.11 (8H, m, phenyl), 8.50 (4H, s, -CH=). IR (KBr disk, cm⁻¹): 1763, 1736, 1704 (carbonyl, esters). Elemental analysis: Calc. for C₁₁₆H₁₃₆O₃₂Si₄: C, 64.66; H, 6.36 percent. Found: C, 64.51; H, 6.42 percent.

CS7. Yield: 24.9%. ¹H-NMR (ppm, CDCl₃): $\delta = 0.11$ (12H, br s, SiCH₃), 0.59 (8H, br m, SiCH₂-), 0.92 (12H, t, CH₃), 1.31 ~1.84 (64H, m, -CH₂CH₂CH₂CH₂- and -CH₂CH₂CH₂CH₂-), 4.04 (8H, br m, OCH₂), 4.34 (8H, t, COOCH₂), 6.95 (8H, br m, phenyl), 7.24 (8H, br m, phenyl), 7.65 (4H, d, phenyl), 8.11 (8H, m, phenyl), 8.50 (4H, s, -CH=). IR (KBr disk, cm⁻¹): 1763, 1736, 1704 (carbonyl, esters). Elemental analysis: Calc. for C₁₂₀H₁₄₄O₃₂Si₄: C, 65.19; H, 6.56 percent. Found: C, 65.16; H, 6.62 percent.

CS8. Yield: 25.9%. ¹H-NMR (ppm, CDCl₃): $\delta = 0.11$ (12H, br s, SiCH₃), 0.59 (8H, br m, SiCH₂-), 0.86 (12H, t, CH₃), 1.30~1.82 (72H, m, -CH₂CH₂CH₂CH₂- and -CH₂CH₂CH₂CH₂CH₂CH₂-), 4.04 (8H, br m, OCH₂), 4.34 (8H, t, COOCH₂), 6.95 (8H, br m, phenyl), 7.24 (8H, br m, phenyl), 7.65 (4H, d, phenyl), 8.11 (8H, m, phenyl), 8.50 (4H, s, -CH=). IR (KBr disk, cm⁻¹): 1763, 1736, 1704 (carbonyl, esters). Elemental analysis: Calc. for C₁₂₄H₁₅₂O₃₂Si₄: C, 65.70; H, 6.76 percent. Found: C, 65.74; H, 6.90 percent.

Supplementary Fig. 1. Typical textures of **CS1** at different phases. a) focal-conic texture of smectic A phase at 190°C; b) the texture at the transition from SmA phase to crystal phase at 131°C on cooling; c) the texture of crystal phase at 120°C; d) the texture of smectic A phase at 176°C on the subsequent heating. (magnification: 400x)

Supplementary Fig. 2. Typical textures of **CS8**. a) focal-conic texture of smectic A at 124°C; b) focal-conic texture of the glassy state at room temperature. (magnification: 400x)

Code	Tail length (n)	Measured Layer	Calculated Extended	d/L
		Spacing $(d, Å)$	Molecular Length (L, Å)	
V1	1	*	22.1	*
V2	2	*	22.9	*
V3	3	23.4	24.3	0.96
V4	4	24.5	25.3	0.97
V5	5	24.3	26.6	0.92
V6	6	26.8	27.6	0.97
V7	7		29.0	
V8	8	26.9	30.0	0.90
CS1	1	27.1		1.23
CS2	2	25.8		1.13
CS3	3	25.8		1.06
CS4	4	26.3		1.06
CS5	5	26.1		0.98
CS6	6	25.1		0.91
CS7	7	24.5		0.85
CS8	8	25.1		0.84

Supplementary Table 1 Layer spacing, *d*, as determined by X-ray diffraction and calculated extended molecular length, *L*, by MM2 force field method

*: Not measured because they don't show liquid crystalline properties. ---: Not measured due to its narrow liquid crystalline temperature range.