Arene-Perfluoroarene Interactions in Crystal Engineering 9: Structural Preferences in Polyfluorinated Tolans[†]

Caroline E. Smith, ^a Philip S. Smith, ^a Rhodri Ll. Thomas, ^a Edward G. Robins, ^a Jonathan C. Collings, ^a Chaoyang Dai, ^b Andrew J. Scott, ^c Simon Borwick, ^a Andrei S. Batsanov, *a Stephen W. Watt, ^d Stewart J. Clark, ^e Christopher Viney, ^d Judith A.K. Howard, ^a William Clegg, ^c and Todd B. Marder ^a*

^aDepartment of Chemistry, University of Durham, South Road, Durham, DH1 3LE, UK, Email: Todd.Marder@durham.ac.uk

^bDepartment of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada.

^cSchool of Natural Sciences (Chemistry), University of Newcastle upon Tyne, New Lastle upon Tyne, NE1 7RU, UK.

 $[^]d Department\ of\ Chemistry,\ Heriot-Watt\ University,\ Riccarton,\ Edinburgh,\ EH14\ 4AS,\ Scotland.$

^eDepartment of Physics, University of Durham, South Road, Durham DH1 3LE, UK.

Supplementary Material (ESI) for Journal of Materials Chemistry This journal is © The Royal Society of Chemistry 2004

Details of the spectroscopic characterisation of 4b-k:

Compound **4b**: R = Et. Yield: 0.225 g, 89%. m.p. 49–50°C. ¹H NMR (200 MHz): δ 1.44 (t, ${}^{3}J_{HH} = 7.1$ Hz, 3H, O-CH₂-CH₃), 4.36 (q, ${}^{3}J_{HH} = 7.1$ Hz, 2H O-CH₂-CH₃), 7.39 (m, 3H, ArH), 7.57 (m, 2H, ArH). ¹⁹F-{ ${}^{1}H$ } NMR (188 MHz): δ -138.3 (m, 2F), -157.8 (m, 2F). ¹³C-{ ${}^{1}H$ } NMR (100 MHz): δ 15.4 (*C*H₃), 71.1 (*C*H₂-O), 74.1 (*C*≡*C*), 98.1 (m, *C*_{Ar}-O), 100.2 (*C*≡*C*), 122.0 (*C*_{ipso} of phenyl ring), 128.5 (*C*_{Ar}-H) 129.1 (*C*_{Ar}-H), 131.8 (*C*_{Ar}-H), 138.3 (m, *C*_{ispo} of fluoroaryl ring), 141.1 (d of m, *C*_{Ar}-F, *J*_{CF} = 240 Hz), 147.3 (d of m, *C*_{Ar}-F *J*_{CF} = 250 Hz). MS (EI) m/z (relative intensity): 294 (M⁺, 29), 266 (M⁺-C₂H₄, 100). Elemental analysis calculated for C₁₆H₁₀F₄O: C 65.31, H 3.43; found: C 64.98, H 3.41.

Compound 4c: R = ⁿPr. Yield: 0.243 g, 85%, m.p. 75–75.5°C. ¹H NMR (200 MHz): δ 1.05 (t, ³ J_{HH} = 7.0 Hz, 3H, CH₃-), 1.83 (apparent sext, ³ J_{HH} = 7.0 Hz, 2H, CH₂-), 4.25 (t, ³ J_{HH} = 7.0 Hz, 2H, O-CH₂), 7.40 (m, 3H, ArH), 7.60 (m, 2H, ArH). ¹⁹F-{¹H} NMR (188 MHz): δ -138.5 (m, 2F), -157.8 (m, 2F). ¹³C-{¹H} NMR (63 MHz): δ 10.0, 23.2 (alkyl), 74.2 (C≡C), 77.1 (CH₂-O), 98.1 (m, C_{Ar}-O), 100.1 (C≡C), 122.0 (C_{ipso} of phenyl ring) 128.4 (C_{Ar}-H), 129.2 (C_{Ar}-H), 131.8 (C_{Ar}-H), 138.2 (m, C_{ipso} of fluoroaryl ring) 141.1 (d of m, C_{Ar}-F, D_{CF} = 250 Hz), 147.3 (d of m, C_{Ar}-F, D_{CF} = 260 Hz). MS (EI) m/z (relative intensity): 308 (DH⁺, 13), 266 (DH⁺-C₃H₆, 100). Elemental analysis calculated for C₁₇H₁₂F₄O: C 66.23, H 3.92; found: C 65.99, H 3.91.

Compound **4d**, R = i Pr. Yield: 0.211 g, 74%. m.p. 64.2–64.7°C. 1 H NMR (300 MHz): δ 1.32 (d, ${}^{3}J_{HH}$ = 6.0 Hz, 6H, CH(C H_{3})₂), 4.54 (sep, ${}^{3}J_{HH}$ = 6.0 Hz, 1H, CHMe₂), 7.31 (m, 3H, ArH), 7.51 (m, 2H, ArH). 19 F-{ 1 H} NMR (188 MHz): δ -138.5 (m, 2F), -156.1 (m, 2F). (MS (EI) m/z : 308 (M $^{+}$, 5), 293 (M $^{+}$ -Me, 2), 266 (M $^{+}$ -C₃H₆, 100). Elemental analysis calculated for C₁₇H₁₂F₄O: C 66.23, H 3.92; found: C 66.08, H 3.82.

Compound 4e, R = ⁿBu. Yield: 0.229 g, 76%. m.p. 31.2–32°C. ¹H NMR (200 MHz): δ 0.98 (t, ${}^{3}J_{\text{HH}} = 7.3$ Hz, 3H, CH₃-), 1.51 (apparent sext, ${}^{3}J_{\text{HH}} = 7.3$ Hz, 2H, -CH₂-CH₃), 1.78 (apparent qn, ${}^{3}J_{\text{HH}} = 7.3$ Hz, 2H, CH₂-CH₂-CH₃), 4.27 (t, ${}^{3}J_{\text{HH}} = 6.8$ Hz, 2H, -OCH₂), 7.38 (m, 3H, ArH), 7.57 (m, 2H, ArH). ¹⁹F-{}^{1}H} NMR (188 MHz): δ -138.5 (m, 2F), -157.9 (m, 2F). ¹³C-{}^{1}H} NMR (63 MHz): δ 13.6, 18.7, 31.9 (alkyl), 74.2(C = C), 75.2 (C = C), 97.8 (m, C = C), 100.1 (C = C), 122.0 (C = C) in phenyl ring), 128.4 (C = C), 129.2 (C = C), 131.8 (C = C), 131.8 (C = C), 131.9 (alkyl), 74.2(C = C), 129.2 (C = C), 131.8 (C = C), 131.8 (C = C), 129.0 (C = C), 129.

Supplementary Material (ESI) for Journal of Materials Chemistry This journal is © The Royal Society of Chemistry 2004

Compound 4f, R = n-C₅H₁₁. Yield: 0.312 g, 68%. m.p. 27–27.5°C. ¹H NMR (200 MHz): δ 0.94 (t, ${}^{3}J_{HH}$ = 7.0 Hz, 3H, CH₃-), 1.41 (m, 4H, -CH₂-CH₃ and CH₂-CH₂-CH₃), 1.80 (m, 2H, CH₂-CH₂-CH₂-CH₃), 4.27 (t, ${}^{3}J_{HH}$ = 6.5 Hz, 2H, O-CH₂), 7.38 (m, 3H, ArH), 7.57 (m, 2H, ArH). ¹⁹F-{ ${}^{1}H$ } NMR (188 MHz): δ -138.5 (m, 2F), -157.8 (m, 2F). ¹³C-{ ${}^{1}H$ } NMR (63 MHz): δ 13.9, 22.7, 27.6, 29.6 (alkyl), 74.16 (C≡C), 75.46 (CH₂-O), 98.0 (m, C_{Ar}-O), 100.1 (C≡C), 122.0 (C_{ipso} of phenyl ring), 128.4 (C_{Ar}-H), 129.2 (C_{Ar}-H), 131.8 (C_{Ar}-H), 138.2 (m, C_{ispo} of fluoroaryl ring), 141.2 (d of m, C_{Ar}-F, D_{CF} = 248 Hz) 147.2 (d of m, C_{Ar}-F, D_{CF} = 263 Hz). MS (EI) m/z (relative intensity): 336 (M⁺, 7), 266 (M⁺ - C₅H₁₀, 100). Elemental analysis calculated for C₁₉H₁₆F₄O: C 67.85, H 4.79; found: C 68.05, H 4.89.

Compound 4g, R = PhCH₂ (Bz). Gentle heat was applied (40°C water bath for 1.5 h) to drive the reaction to completion. Yield: 0.204 g, 61%. m.p. 126.5–128°C. ¹H NMR (200 MHz): δ 5.30 (s, 2H, -CH₂O), 7.37-7.42 (m, 8H, ArH), 7.56 (m, 2H, ArH). ¹⁹F-{¹H} (188 MHz): δ -138.3 (m, 2F), -156.6 (m, 2F). ¹³C-{¹H} NMR (63 MHz): δ 74.1 (CH₂-O), 77.2 (C≡C), 98.6 (m, C_{Ar}-O), 100.4 (C≡C), 121.9 (C_{ipso} of phenyl ring), 128.3 (C_{Ar}-H), 128.4 (C_{Ar}-H), 128.7 (C_{Ar}-H), 128.9 (C_{Ar}-H), 129.2 (C_{Ar}-H), 131.8 (C_{Ar}-H), 135.3 (C_{ipso} of phenyl ring), 137.2 (m, C_{ispo} of fluoroaryl ring), 141.3 (d of m, C_{Ar}-F, D_{CF} = 246 Hz), 147.1 (d of m, C_{Ar}-F, D_{CF} = 258 Hz). MS (EI) m/z (relative intensity): 356 (D⁺, 3), 265 (D⁺-CH₂Ph, 3), 91 (PhCH₂⁺, 100). Elemental analysis calculated for C₂₁H₁₂F₄O: C 70.79, H 3.39; found: C 71.11, H 3.48.

Compound **4h,** R = Ph(CH₂)₂. Yield: 0.188 g, 55%. m.p. 72–73°C. ¹H NMR (200 MHz): δ 3.12 (t, ${}^{3}J_{HH} = 7.0$ Hz, 2H, CH₂Ph), 4.49 (t, ${}^{3}J_{HH} = 7.0$ Hz, 2H, O-CH₂), 7.25 – 7.40 (m, 7H, Ar-H), 7.55 – 7.60 (m, 3H, Ar-H). ¹⁹F-{ ${}^{1}H$ } NMR (188 MHz): δ -138.3 (m, 2F), -158.6 (m, 2F). ¹³C-{ ${}^{1}H$ } NMR (63 MHz): δ 36.4 (CH₂-Ph), 74.0 (C≡C), 75.5 (CH₂-O), 98.1 (m, C_{Ar} -O), 100.2 (C≡C), 121.9 (C_{ipso} of phenyl ring), 126.8 (C_{Ar} -H), 128.4 (C_{Ar} -H), 128.6 (C_{Ar} -H), 129.3 (C_{Ar} -H), 131.8 (C_{Ar} -H), 137.0 (C_{ipso} of phenyl ring), 137.9 (m, C_{ipso} of fluoroaryl ring), 140.9 (d of m, C_{Ar} -F, C_{C} F = 258 Hz), 147.4 (d of m, C_{Ar} -F, C_{C} F = 264 Hz). MS (EI) m/z (relative intensity): 370 (M⁺, 100), 266 (M⁺ - CH₂CHPh, 35), 105 (PhCH₂CH₂⁺, 92). Elemental analysis calculated for C_{22} H₁₄F₄O: C 71.35, H 3.81; found: C 70.88, H 3.80.

Compound 4i, R = 4-CH₃C₆H₄. Yield: 0.272 g, 82%. m.p. 85–86.5°C. ¹H NMR (200 MHz): δ 2.56 (s, 3H, Ph-C H_3), 6.82 (m, 2H, ArH), 7.56 (m, 2H, ArH), 7.50 − 7.55 (m, 5H, ArH). ¹⁹F-{¹H} NMR (188 MHz): δ -137.3 (m, 2F), -154.9 (m, 2F). ¹³C-{¹H} NMR (100 MHz): δ 20.6 (CH₃), 73.8 (C≡C), 100.8 (m, C_{Ar}-O), 101.2 (C≡C), 115.5 (C_{Ar}-H), 121.8 (C_{ipso} of phenyl ring), 128.5 (C_{Ar}-H), 129.5 (C_{Ar}-H), 130.2 (C_{Ar}-H), 131.9 (C_{Ar}-H), 133.5 (C_{Ar}-Me), 134.4 (m, C_{ipso} of fluoroaryl ring), 141.6 (d of m, C_{Ar}-F, C_{CF} = 250 Hz), 147.4 (d of m, C_{Ar}-F,

Supplementary Material (ESI) for Journal of Materials Chemistry This journal is © The Royal Society of Chemistry 2004

 $J_{\text{CF}} = 240 \text{ Hz}$), 155.1 (C_{Ar} -O). MS (EI) m/z (relative intensity): 356 (M⁺, 100), 265 (M⁺ - C₆H₄Me, 21), 91 (C₆H₄Me⁺, 80). Elemental analysis calculated for C₂₁H₁₂F₄O: C 70.79, H 3.39; found: C 70.68, H 3.67.

Compound **4j**, R = 4-EtC₆H₄. Yield: 0.276 g, 80%. m.p. 99.5-101 °C. ¹H NMR (200 MHz): δ 1.23 (t, ${}^{3}J_{HH}$ = 7.5 Hz, 3H, CH₂-CH₃), 2.63 (q, ${}^{3}J_{HH}$ = 7.5 Hz, 2H, CH₂-CH₃), 6.91 (m, 2H, ArH), 7.16 (m, 2H, ArH), 7.41 (m, 3H, ArH), 7.60 (m, 2H, ArH). ¹⁹F-{¹H} NMR (188 MHz): δ -137.3 (m, 2F), -154.9 (m, 2F). ¹³C-{¹H} NMR (100 MHz): δ 15.6, 28.0 (alkyl), 73.8 (C≡C), 100.7 (m, C_{Ar} -O), 101.3 (C≡C), 115.5 (C_{Ar} -H), 121.8 (C_{ipso} of phenyl ring), 128.5 (C_{Ar} -H), 129.1 (C_{Ar} -H), 129.5 (C_{Ar} -H), 131.9 (C_{Ar} -H), 134.4 (m, C_{ipso} of fluoroaryl ring), 139.4 (C_{Ar} -Et), 141.6 (d of m, C_{Ar} -F, J_{CF} = 240 Hz), 147.4 (d of m, C_{Ar} -F, J_{CF} = 240 Hz), 155.2 (C_{Ar} -O). MS (EI) m/z (relative intensity): 370 (C_{Ar} -N, 355 (C_{Ar} -CH₃, 100), 265 (C_{Ar} -PhEt and -H, 19). Elemental analysis calculated for C_{22} H₁₄F₄O: C_{Ar} -C71.35, H 3.81; found: C_{Ar} -PhEt 4.24.

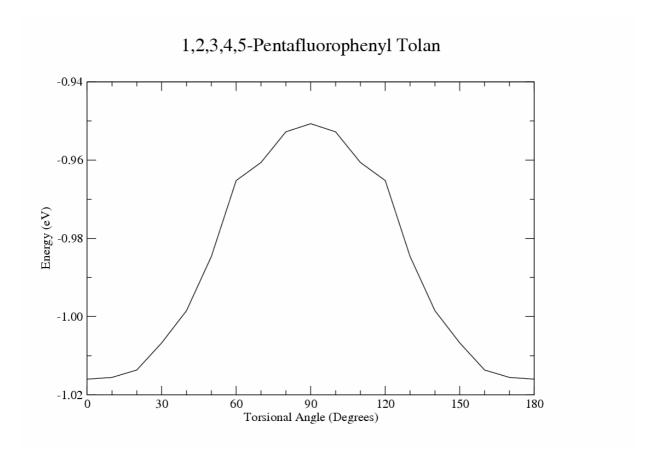


Figure S1: Energy as a function of inter-ring torsion angle in 1,2,3,4,5-pentafluoro tolan.

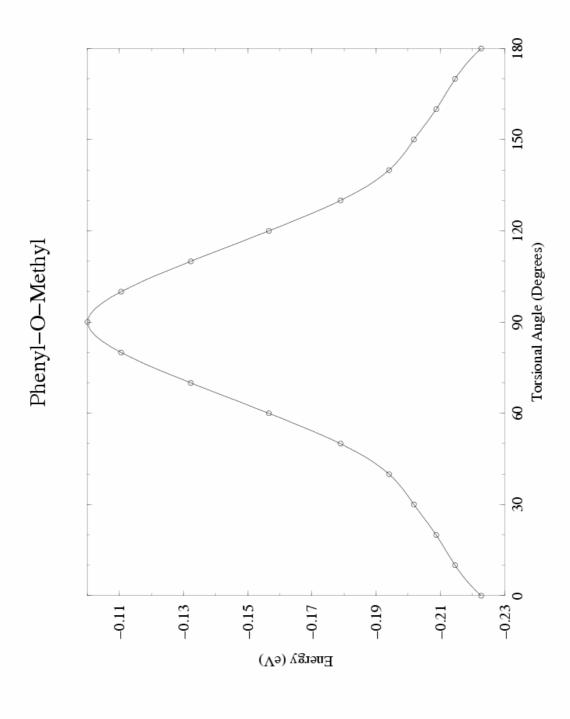


Figure S2: Energy as a function of C(Ph)-C(Ph)-O-C(Me) torsion angle in Ph-O-Me.