Electronic supplementary Information

3,4-[(3-Decyloxy)-1,2-propylenedioxy]thiophene (6)
(2,3-Dihydro-thieno[3,4-b][1,4]dioxin-2-yl)methanol $1(7.60 \mathrm{~g}, 44.1 \mathrm{mmol}$) and catalytic amount of 18-crown-6 (230 mg, 0.86 $\mathrm{mmol}, 2 \mathrm{~mol}$. \%) were dissolved in dry THF (100 mL) under nitrogen and cooled to $-5^{\circ} \mathrm{C}$. Sodium hydride (60% suspension in oil, $2.30 \mathrm{~g}, 57.5 \mathrm{mmol}$) was added to this solution in several portions at $-5 \div 0^{\circ} \mathrm{C}$ for $15-20 \mathrm{~min}$, the mixture was allowed to warm to room temperature and stirred at room temperature for 2 h . Decyl bromide ($12.5 \mathrm{~g}, 56.5 \mathrm{mmol}$) was added in one portion and the mixture was stirred with reflux for 3 days. THF was evaporated on rotavapor, the residue was diluted with DCM $/ \mathrm{H}_{2} \mathrm{O}(250 / 150 \mathrm{~mL})$ and acidified. DCM layer was washed with $\mathrm{H}_{2} \mathrm{O}(2 \times 150 \mathrm{~mL})$, dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and solvent removed. Chromatography of the residual brown oil on silica gel with petroleum ether (PE) : $\mathrm{Et}_{2} \mathrm{O}$ (4:1) afforded desired product 2 ($12.35 \mathrm{~g}, 89.5 \%$) as yellow oil.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ
$6.333\left(1 \mathrm{H}, \mathrm{d},{ }^{4} J_{2,5}=3.7 \mathrm{~Hz}\right.$, thiophene-2),
$6.323\left(1 \mathrm{H}, \mathrm{d},{ }^{4} J_{2,5}=3.7 \mathrm{~Hz}\right.$, thiophene-5),
$4.30\left[1 \mathrm{H}, \mathrm{m},-\mathrm{OCH}_{2}{ }^{\text {ab }} \mathrm{CH}^{\mathrm{c}}\left(\mathrm{CH}_{2} \mathrm{OR}\right) \mathrm{O}-\right]$,
$4.25\left[1 \mathrm{H}, \mathrm{dd},{ }^{2} J_{\mathrm{a}, \mathrm{b}}=11.6 \mathrm{~Hz},{ }^{3} J_{\mathrm{b}, \mathrm{c}}=2.1 \mathrm{~Hz},-\mathrm{OCH}^{\mathrm{a}} H^{b} \mathrm{CH}^{\mathrm{c}}\left(\mathrm{CH}_{2} \mathrm{OR}\right) \mathrm{O}-\right]$,
$4.06\left[1 \mathrm{H}, \mathrm{dd},{ }^{2} J_{\mathrm{a}, \mathrm{b}}=11.6 \mathrm{~Hz},{ }^{3} J_{\mathrm{a}, \mathrm{c}}=7.6 \mathrm{~Hz},-\mathrm{OCH}^{a} \mathrm{H}^{\mathrm{b}} \mathrm{CH}^{\mathrm{c}}\left(\mathrm{CH}_{2} \mathrm{OR}\right) \mathrm{O}-\right]$,
$3.68\left[1 \mathrm{H}, \mathrm{dd},{ }^{2} J_{\mathrm{d}, \mathrm{e}}=10.4 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{\mathrm{d}, \mathrm{c}}=5.0 \mathrm{~Hz},-\mathrm{OCH}_{2} \mathrm{CH}^{\mathrm{c}}\left(\mathrm{CH}^{d} \mathrm{H}^{\mathrm{e}} \mathrm{OR}\right) \mathrm{O}-\right]$,
$3.59\left[1 \mathrm{H}, \mathrm{dd},{ }^{2} J_{\mathrm{d}, \mathrm{e}}=10.4 \mathrm{~Hz},{ }^{3} J_{\mathrm{e}, \mathrm{c}}=6.0 \mathrm{~Hz},-\mathrm{OCH}_{2} \mathrm{CH}^{\mathrm{c}}\left(\mathrm{CH}^{d} H^{\mathrm{e}} \mathrm{OR}\right) \mathrm{O}-\right]$,
$3.49\left(2 \mathrm{H}, \mathrm{t},{ }^{2} \mathrm{~J}=6.7 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{C}_{9} \mathrm{H}_{19}\right)$,
1.57 ($2 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{C}_{8} \mathrm{H}_{17}$),
$1.26\left[14 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \mathrm{CH}_{2}\left(\mathrm{CH}_{2}\right)_{7} \mathrm{CH}_{3}\right]$,
$0.88\left(3 \mathrm{H}, \mathrm{t},{ }^{2} \mathrm{~J}=6.7 \mathrm{~Hz}, \mathrm{CH}_{3}\right)$,
${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 141.74$, 141.69 (thiophene-3,4), 99.59, 99.50 (thiophene-2,5), 72.74, 71.13, 69.17, 66.32, 31.88, 29.57 (2C), 29.54, 29.42, 29.28, 26.05, 22.64, $14.02\left(\mathrm{CH}_{3}\right)$.

2\{5\}-Tributylstannyl-3,4-[(3-Decyloxy)-1,2-propylenedioxy]thiophene (5)
Oven-dried nitrogen flushed flask was charged with compound $\mathbf{6}(3.94 \mathrm{~g}, 12.6 \mathrm{mmol})$ and dry THF (50 mL), cooled to $-70{ }^{\circ} \mathrm{C}$, and to this solution butyl lithium (2.5 M solution in hexane, $5.2 \mathrm{~mL}, 13.0 \mathrm{mmol}$) was added with stirring for 15 min . The mixture was allowed to warm to $-20^{\circ} \mathrm{C}$ for 2.5 h , cooled again to $-70^{\circ} \mathrm{C}$ and solution of tributyltin chloride $(7.10 \mathrm{~g}, 12.6$ mmol) in dry THF (15 mL) was added. The reaction mixture was allowed to warm to $-10^{\circ} \mathrm{C}$ for 1 h and it was kept at this temperature overnight. The mixture was diluted with 5% aqueous $\mathrm{NH}_{4} \mathrm{Cl}(150 \mathrm{~mL})$ and extracted with $\mathrm{DCM}(2 \times 100 \mathrm{~mL})$. DCM layer was washed with $\mathrm{H}_{2} \mathrm{O}$ and dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ affording compound 5 in 95% yield as yellow oil. This product was used in further syntheses without further purification. (${ }^{1} \mathrm{H}$ NMR showed the presence of ca. 10% of starting compound 5 .
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ
$6.582+6.575(\Sigma 1 \mathrm{H} ; \mathrm{s}$, thiophene-2 +s , thiophene-5),
4.24-4.20 [2H, m, OCH $\left.{ }^{\mathrm{a}} \mathrm{H}^{\mathrm{b}} \mathrm{CH}^{\mathrm{c}}\left(\mathrm{CH}_{2} \mathrm{OR}\right) \mathrm{O}-\right]$,
4.03-3.98 [1H, m, OCH $\left.{ }^{\mathrm{a}} \mathrm{H}^{\mathrm{b}} \mathrm{CH}^{\mathrm{c}}\left(\mathrm{CH}_{2} \mathrm{OR}\right) \mathrm{O}-\right]$,
3.69-3.64 (1H, m, $\mathrm{CHHOC}_{10} \mathrm{H}_{21}$),
3.59-3.52 (1H, m, CHHOC $10 \mathrm{H}_{21}$),
$3.48\left(2 \mathrm{H}, \mathrm{t},{ }^{2} \mathrm{~J}=6.6 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{C}_{9} \mathrm{H}_{19}\right)$,
1.57-1.55 [8H, m, $\left.\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{C}_{8} \mathrm{H}_{17}+\mathrm{Sn}\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{C}_{2} \mathrm{H}_{5}\right)_{3}\right]$,
1.35-1.26 \{20H, m, $\left.\mathrm{OCH}_{2} \mathrm{CH}_{2}\left(\mathrm{CH}_{2}\right)_{7} \mathrm{CH}_{3}+\mathrm{Sn}\left[\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{3}\right\}$,
$1.09\left\{6 \mathrm{H}, \mathrm{t}, J=8.1 \mathrm{~Hz}, \mathrm{Sn}\left[\mathrm{CH}_{2}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}_{3}\right]_{3}\right\}$,
$0.89\left\{12 \mathrm{H}, \mathrm{m},\left(\mathrm{CH}_{2}\right)_{9} \mathrm{CH}_{3}+\mathrm{Sn}\left[\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CH}_{3}\right]_{3}\right\}$,
${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ [147.59 + 147.51 (1C), $142.30+142.25(1 \mathrm{C})$, thiopnene-3 and thiopnene-4], [108,81 +108.71 (1C), $105.84+105.75$ (1C), thiophene-2 and thiophene-5], [72.68 + 72.56 (1C), $72.08+72.05(1 \mathrm{C}), 69.35+69.26$ (1C), 66.30 + $66.23(1 \mathrm{C}), \mathrm{OCH}_{2} \mathrm{CH}(\mathrm{O}) \mathrm{CH}_{2} \mathrm{OCH}_{2}$], 31.86, 29.55, 29.52, (29.44 + 29.40), 29.26, 28.95, 28.93, (27.13 + 27.09), (26.06 + 26.02), 22.62, 14.00, 13.59, (10.59 + 10.56).

2-Bromo-2,3-dihexylthieno[3,4-b]pyrazine (3)
2,3-Dihexylthieno[3,4-b]pyrazine (4) ($1.20 \mathrm{~g}, 3.94 \mathrm{mmol}$) was dissolved in dry DMF (200 mL) under nitrogen and cooled to $55^{\circ} \mathrm{C}$ (some precipitation was observed below $-35^{\circ} \mathrm{C}$). A solution of N-bromosuccinimide (NBS) ($0.70 \mathrm{~g}, 3.93 \mathrm{mmol}$) in dry DMF (80 mL) was added for 30 min and the mixture was stirred for 3.5 h whereas the temperature was allowed to increase gradually from -50 to $0^{\circ} \mathrm{C}$. The mixture was diluted with $\mathrm{H}_{2} \mathrm{O}(1.5 \mathrm{~L})$ and extracted with DCM $(10 \times 100 \mathrm{~mL})$. Combined DCM extracts were dried $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was evaporated on rotavapor affording dark-green solid which was chromatographed on silica gel. First elution by PE:DCM (3:1) afforded by-product dibromoderivative 6 ($0.09 \mathrm{~g}, 5 \%$); further elution by PE:DCM (2:1) and then PE:DCM (1:1) afforded target monobromo-derivative $\mathbf{5}(0.91 \mathrm{~g}, 60 \%)$ as yellow solid which becomes greenish when stored at room temperature.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.81\left(1 \mathrm{H}, \mathrm{s}\right.$, thiophene-2), $2.90\left(2 \mathrm{H}, \mathrm{t}, J=8.6 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{C}_{5} \mathrm{H}_{11}\right), 2.89(2 \mathrm{H}, \mathrm{t}, J=8.6 \mathrm{~Hz}$, $\left.\mathrm{CH}_{2} \mathrm{C}_{5} \mathrm{H}_{11}\right), 1.84-1.77\left(4 \mathrm{H}, \mathrm{m}, 2 \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{C}_{4} \mathrm{H}_{9}\right), 1.47\left(4 \mathrm{H}, \mathrm{m}, 2 \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{C}_{3} \mathrm{H}_{7}\right), 1.35\left(8 \mathrm{H}, \mathrm{m}, 2\left(\mathrm{CH}_{2}\right)_{2}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}_{3}\right), 0.91$ ($6 \mathrm{H}, \mathrm{m}, 2 \mathrm{CH}_{3}$).
${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 157.72$, 156.48, 149.08, 129.98, 128.22, 115.35, 35.35, 35.27, 31.62, 31.52, 29.21, 29.15, 28.44, 27.86, 22.47, 22.37, 13.97, 13.93.

5-[2(3)-decyloxy-2,3-dihydrothieno[3,4-b][1,4]dioxin-5-yl]-2,3-dihexylthieno[3,4-b]pyrazine (2)
Tin derivative $5(2.20 \mathrm{~g}, 3.66 \mathrm{mmol})$, bromo derivative $3(0.88 \mathrm{~g}, 2.30 \mathrm{mmol})$ and catalyst $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(60 \mathrm{mg}, 0.085 \mathrm{mmol}$, $3.7 \mathrm{~mol} \%$) in dry toluene were stirred at $90^{\circ} \mathrm{C}$ under nitrogen for 16 h . The mixture was filtered through 4 cm layer of silica gel, washed with toluene, the solvent was removed on rotavapor, and the residue was chromatographed on silica gel with toluene as an eluent. Yield 0.81 g (57%), after repeating chromatography $-0.69 \mathrm{~g}(49 \%), \mathrm{R}_{\mathrm{f}}=0.24$.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ
7.567 (s) +7.561 (s) $(\Sigma 1 \mathrm{H}, \mathrm{N}-\mathrm{C}=\mathrm{CH}-\mathrm{S})$,
6.428 (s) +6.417 (s) $(\Sigma 1 \mathrm{H}, \mathrm{O}-\mathrm{C}=\mathrm{CH}-\mathrm{S})$,
$4.52(\mathrm{~m})+4.41(\mathrm{~m})\left[\mathrm{\Sigma} 1 \mathrm{H},-\mathrm{OCH}_{2} \mathrm{CH}\left(\mathrm{CH}_{2} \mathrm{OR}\right) \mathrm{O}-\right]$,
$4.51\left(\mathrm{dd},{ }^{2} J_{\mathrm{a}, \mathrm{b}}=11.5 \mathrm{~Hz},{ }^{3} J_{\mathrm{b}, \mathrm{c}}=2.1 \mathrm{~Hz}\right)+4.35\left(\mathrm{dd},{ }^{2} J_{\mathrm{a}, \mathrm{b}}=11.7 \mathrm{~Hz},{ }^{3} J_{\mathrm{b}, \mathrm{c}}=2.2 \mathrm{~Hz}\right)\left[\Sigma 1 \mathrm{H},-\mathrm{OCH}^{\mathrm{a}} H^{\mathrm{b}} \mathrm{CH}^{\mathrm{c}}\left(\mathrm{CH}_{2} \mathrm{OR}\right) \mathrm{O}-\right]$,
$4.27\left(\mathrm{dd},{ }^{2} J_{\mathrm{a}, \mathrm{b}}=11.5 \mathrm{~Hz},{ }^{3} J_{\mathrm{a}, \mathrm{c}}=7.7 \mathrm{~Hz}\right)+4.17\left(\mathrm{dd},{ }^{2} J_{\mathrm{a}, \mathrm{b}}=11.7 \mathrm{~Hz},{ }^{3} J_{\mathrm{a}, \mathrm{c}}=7.5 \mathrm{~Hz}\right)\left[\Sigma 1 \mathrm{H},-\mathrm{OCH}^{a} \mathrm{H}^{\mathrm{b}} \mathrm{CH}^{\mathrm{c}}\left(\mathrm{CH}_{2} \mathrm{OR}\right) \mathrm{O}-\right]$,
$3.84\left(\mathrm{dd},{ }^{2} J_{\mathrm{d}, \mathrm{e}}=10.5 \mathrm{~Hz},{ }^{3} J_{\mathrm{e}, \mathrm{c}}=4.8 \mathrm{~Hz}\right)+3.74(\mathrm{dd})\left[\Sigma 1 \mathrm{H},-\mathrm{OCH}_{2} \mathrm{CH}^{\mathrm{c}}\left(\mathrm{CH}^{d} \mathrm{H}^{\mathrm{e}} \mathrm{OR}\right) \mathrm{O}-\right]$,
$3.74(\mathrm{dd})+3.66\left(\mathrm{dd},{ }^{2} J_{\mathrm{d}, \mathrm{e}}=10.5 \mathrm{~Hz},{ }^{3} J_{\mathrm{e}, \mathrm{c}}=5.9 \mathrm{~Hz}\right)\left[\Sigma 1 \mathrm{H},-\mathrm{OCH}_{2} \mathrm{CH}^{\mathrm{c}}\left(\mathrm{CH}^{d} H^{\mathrm{e}} \mathrm{OR}\right) \mathrm{O}-\right]$,
$2.92\left(2 \mathrm{H}, \mathrm{t},{ }^{2} \mathrm{~J}=7.4 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{C}_{5} \mathrm{H}_{11}\right)$,
$2.86\left(2 \mathrm{H}, \mathrm{t},{ }^{2} \mathrm{~J}=7.4 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{C}_{5} \mathrm{H}_{11}\right)$,
$1.99\left(2 \mathrm{H}, \mathrm{tt}, J=7.4 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{C}_{4} \mathrm{H}_{9}\right)$,
$1.77\left(2 \mathrm{H}, \mathrm{tt}, J=7.5 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{C}_{4} \mathrm{H}_{9}\right)$,
$1.61\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right)$
$1.50-1.24\left(26 \mathrm{H}, \mathrm{m}, 13 \mathrm{CH}_{2}\right)$
$0.91\left(9 \mathrm{H}, \mathrm{m}, 3 \mathrm{CH}_{3}\right)$.

