Supplementary Material

Joseph M. Slocik, Rajesh R. Naik, Morley O. Stone, Trevor Douglas, Mark Young and David W. Wright^{*}

S-1. UV-Vis spectra of gold reduced by (HRE)-SubE virus over 4 hours sampled every 30 seconds in a septum sealed 1.5 mL quartz cuvette in water.

S-2. Time plots of absorbance at 550 nm for reduction of AuCl₄⁻ with (HRE)-SubE, Wild type virus, and SubE virus expressed in yeast in water.

S-3. Time plots of absorbance at 550 nm for $AuCl_4^-$ with HRE peptide, YHRE peptide, Y₄HRE peptide, and the tripeptide of YYY in water.

S-4. Time plots of fluorescence over four hours of (HRE)-SubE with $AuCl_4^-$ in water. Excited at 270 nm and 295 nm, while fluorescence was monitored at 352 nm. Excitation slit set at 10 nm, emission slit at 5 nm, 30 second cycles, average time 1 second, PMT voltage 800 V.

S-5. Spatial relationship between tyrosine and tryptophan residues within CCMV subunit.

S-6. Time plot of fluorescence for $AuCl_4/YYY$ tripeptide in water with same parameters as S-4.

S-7. Gold titration plot of (HRE)-SubE virus. 20 μ L of purified (HRE)-SubE (stock concentration 0.2 μ g/ μ l) was added to 750 μ L of a 50 mM HEPES buffer pH 7.5 in a septum sealed 1.00 mL quartz cuvette. A 5 μ L aliquot of a 1 mM stock solution of HAuCl₄ (Strem) was added to (HRE)-SubE and incubated at room temperature for 1 hour at which time the UV-Visible spectrum was obtained on a Hewlett Packard Agilent 8453 photodiode array spectrophotometer. Subsequent 5 μ L additions followed with 1 hour incubation period between additions and monitored until the absorbance at 550 nm became constant.

S-8. Time plots of absorbance for the metal precursors of Ag^+ , $PtCl_6^{2-}$, and $PdCl_6^{2-}$ with (HRE)-SubE virus. Absorbance monitored at 300 nm for $PdCl_6^{2-}/SubE$, at 410 nm for Ag^+ , and at 600 nm for $PtCl_6^{2-}$.

S-9. Time plots of absorbance at 550 nm of (HRE)-SubE/AuCl₄⁻ buffered over the pH range of 4.0 - 9.0 with acetate, phosphate, borate, and Tris buffers prepared at 50 mM and adjusted with HCl or NaOH to desired pH.

S-10. pH profile of (HRE)-SubE reduction of gold vs absorbance at 550 nm at 4 hours from time plots.

S-11. TEM micrographs of native viral capsids negatively stained with 2 % uranyl acetate. (A) (HRE)-SubE capsid. (B) Wild type capsid. (C) SubE capsid expressed in yeast.

S-12. TEM histograms of gold reduced by virus in water. (A) (HRE)-SubE/Au⁰. (B) Wild type/Au⁰. (C) SubE (yeast)/Au⁰.

S-13. EDS spectra of viral/Au 0 nanoparticle structure (negatively stained with 2 % uranyl acetate). Copper peaks are from TEM grid.

S-14. TEM image of AuCl₄⁻ reduced by YYY tripeptide in water.

S-15. TEM micrographs of $Au^0/virus$ structures from borohydride reduction of virus saturated with $AuClP(CH_3)_3$. (A) SubE (yeast)/Au⁰. (B) Wild type virus/Au⁰.

S-16. TEM histograms of Au^0 from S-15. (A) $Au^0/(HRE)$ -SubE. (B) $Au^0/Wild$ type. (C) $Au^0/SubE$ (yeast).

S-17. TEM images of $Au^0/SubE$ (yeast) from borohydride reduction of $AuClP(CH_3)_3$ tilt at -40°,

 -20° , 0° , $+20^{\circ}$, and $+40^{\circ}$ with respect to image plane.

S-18. TEM of Au⁰/SubE (yeast) diluted 10 fold from concentrated sample.

S-19. UV-Vis absorbance spectra of $Au^0/SubE$ (yeast) from $AuClP(CH_3)_3$ (diluted 10 fold) and Au^0 from virus modified with diethylpyrocarbonate (undiluted).

S-2.

S-12.

S-15.

S-16.

S-18.

