Electronic Supplementary Information (ESI)

Dendritic europium complex as single dopant for white-light electroluminescent device

Shangfeng Li, \# Gaoyu Zhong, ${ }^{\ddagger}$ Weihong Zhu, ${ }^{\#}$ Fuyou Li, ${ }^{\ddagger}$ Jianfeng Pan, ${ }^{\text {\# Wei Huang }}{ }^{\ddagger}$ and He Tian ${ }^{*}$ \#
\# Lab for Advanced Materials and Institute of Fine Chemicals, East China University of Science \& Technology, Shanghai 200237, P. R. China
\# Institute of Advanced Materials, Fudan University, Shanghai 200433, P. R. China

Scheme S1. Synthetic route of $\mathrm{Eu}(\mathrm{MCPD})_{3}$ (Phen).

Scheme S2. Synthetic route of $\operatorname{Eu}(\mathrm{BCPD})_{3}$ (Phen).

Synthesis of ethyl 4-[4-(9H-carbazol-9-yl)butoxy]benzoate

A mixture of 9-(4-bromobutyl)-9H-carbazole $(2.00 \mathrm{~g}, 6.62 \mathrm{mmol})$, ethyl 4-hydroxybenzoate ($1.43 \mathrm{~g}, 8.61 \mathrm{mmol}$), potassium carbonate ($1.30 \mathrm{~g}, 9.42 \mathrm{mmol}$) and 18-crown-6 ($0.13 \mathrm{~g}, 4.72 \mathrm{mmol}$) in anhydrous acetone (60 mL) was heated at reflux and stirred vigorously under nitrogen for 56 h . The mixture was allowed to cool and evaporate to dryness under reduced pressure. The residue was washed with water and a large amount of precipitate appeared followed by filtration. After recrystallization, a white needle-like crystal was obtained. (1.71 g), yield 66%. mp: $80-82{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$): $\delta=1.37\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.87\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.10\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$, $3.98\left(\mathrm{t}, 2 \mathrm{H},-\mathrm{OCH}_{2}\right), 4.32\left(\mathrm{dd}, 2 \mathrm{H},-\mathrm{NCH}_{2}\right), 4.40\left(\mathrm{t}, 2 \mathrm{H},-\mathrm{OCH}_{2}\right), 6.84(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.8 \mathrm{~Hz}$, Ph-H), 7.23 (t, 2H, $\left.J_{1}=7.0 \mathrm{~Hz}, J_{2}=8.2 \mathrm{~Hz}, \operatorname{Ph}-\mathrm{H}\right), 7.43(\mathrm{~d}, 2 \mathrm{H}, J=8.1 \mathrm{~Hz}, \mathrm{Ph}-\mathrm{H}), 7.47(\mathrm{t}$, $\left.2 \mathrm{H}, J_{1}=7.2 \mathrm{~Hz}, J_{2}=8.3 \mathrm{~Hz}, \mathrm{Ph}-\mathrm{H}\right), 7.96(\mathrm{~d}, 2 \mathrm{H}, J=8.7 \mathrm{~Hz}, \mathrm{Ph}-\mathrm{H}), 8.10(\mathrm{~d}, 2 \mathrm{H}, J=7.6$ $\mathrm{Hz}, \mathrm{Ph}-\mathrm{H})$.

Synthesis of methyl 3,5-bis[4-(9H-carbazol-9-yl)butoxy]benzoate

A mixture of 9-(4-bromobutyl)-9H- carbazole ($3.00 \mathrm{~g}, 9.93 \mathrm{mmol}$), methyl 3,5-dihydroxybenzoate ($0.78 \mathrm{~g}, 4.64 \mathrm{mmol}$), potassium carbonate ($1.82 \mathrm{~g}, 13.1 \mathrm{mmol}$) and 18 -crown- $6(0.13 \mathrm{~g}, 4.7 \mathrm{mmol})$ in anhydrous acetone $(100 \mathrm{~mL})$ was heated at reflux and stirred vigorously under nitrogen for 56 h . The mixture was allowed to cool and evaporate to dryness under reduced pressure. The residue was washed with water and a large amount of precipitate appeared followed by filtration. After recrystallization with ethanol, a white powder was obtained (2.5 g), yield 88%. mp: 124-127 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$): $\delta=1.89\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 2.11\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 3.88(\mathrm{~s}, 3 \mathrm{H}$, $-\mathrm{OCH}_{3}$), $3.99\left(\mathrm{t}, 4 \mathrm{H},-\mathrm{OCH}_{2}\right), 4.41\left(\mathrm{t}, 4 \mathrm{H},-\mathrm{NCH}_{2}\right), 6.54(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ph}-\mathrm{H}), 7.14(\mathrm{~s}, 2 \mathrm{H}, \mathrm{Ph}-\mathrm{H})$, $7.23\left(\mathrm{t}, 4 \mathrm{H}, J_{1}=7.2 \mathrm{~Hz}, J_{2}=7.4 \mathrm{~Hz}, \mathrm{Ph}-\mathrm{H}\right), 7.42(\mathrm{~d}, 4 \mathrm{H}, J=8.1 \mathrm{~Hz}, \mathrm{Ph}-\mathrm{H}), 7.46(\mathrm{t}, 4 \mathrm{H}$, $\left.J_{1}=7.4 \mathrm{~Hz}, J_{2}=7.8 \mathrm{~Hz}, \mathrm{Ph}-\mathrm{H}\right), 8.10(\mathrm{~d}, 4 \mathrm{H}, J=7.8 \mathrm{~Hz}, \mathrm{Ph}-\mathrm{H})$. Anal. Calcd for $\mathrm{C}_{40} \mathrm{H}_{38} \mathrm{~N}_{2} \mathrm{O}_{4}$: C, 78.66; H, 6.27. Found: C, 78.40; H, 6.00.

Synthesis of methyl 3,4,5-tris[4-(9H-carbazol-9-yl)butoxy]benzoate

A mixture of 9-(4-bromobutyl)-9H-carbazole (3.00 g, 9.93 mmol$)$, methyl 3,4,5-trihydroxy benzoate ($0.60 \mathrm{~g}, 3.31 \mathrm{mmol}$), potassium carbonate $(1.51 \mathrm{~g}, 10.9 \mathrm{mmol})$ and 18 -crown- $6(0.13 \mathrm{~g}, 4.7 \mathrm{mmol})$ in anhydrous acetone (60 mL) was stirred vigorously, and refluxed for 56 h under the protection of nitrogen. After cooled, removed solvents under reduced pressure, the resulting solid was filtrated, and recrystallized from ethanol to give a white needle-like crystal (2.13 g), yield 75%. mp $86-88{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right): \delta=1.55\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.69\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 1.89-1.98\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{CH}_{2}\right)$, $3.84\left(\mathrm{~m}, 5 \mathrm{H},-\mathrm{OCH}_{3},-\mathrm{OCH}_{2}\right), 3.91\left(\mathrm{t}, 4 \mathrm{H},-\mathrm{OCH}_{2}\right), 4.10\left(\mathrm{t}, 2 \mathrm{H},-\mathrm{NCH}_{2}\right), 4.21(\mathrm{t}, 4 \mathrm{H}$, $-\mathrm{NCH}_{2}$), 7.17 (s, 2H, Ph-H), 7.19 (m, 6H, Ph-H), 7.24 (t, H, $J_{1}=1.3 \mathrm{~Hz}, J_{2}=7.2 \mathrm{~Hz}$, Ph-H), 7.29 (d, 4H, J = $8.2 \mathrm{~Hz}, \mathrm{Ph}-\mathrm{H}$), 7.36 - 7.42 (m, 6H, Ph-H), 8.05 (d, 2H, J = 7.7 Hz , Ph-H), 8.06 (d, 4H, $J=5.0 \mathrm{~Hz}, \mathrm{Ph}-\mathrm{H}$). MALDI-TOF MS (FAB): m/z $847.9\left[\mathrm{M}^{+}+1\right]$, $846.9\left[\mathrm{M}^{+}\right]$. Anal. Calcd for $\mathrm{C}_{56} \mathrm{H}_{53} \mathrm{~N}_{3} \mathrm{O}_{5}$: C, 79.31; H, 6.30. Found: C, 79.08; H, 6.11.

Synthesis of 1-[4-[4-(9H-carbazol-9-yl)butoxy]phenyl]-3-phenylpropane-1,3-dione

(MCPD)

To a dry flask containing a solution of acetophenone ($0.37 \mathrm{~g}, 3.08 \mathrm{mmol}$) and ethyl 4-(4-(9H-carbazol-9-yl)butoxy)benzoate ($1.20 \mathrm{~g}, 3.09 \mathrm{mmol}$) in THF (60 mL) was added quickly 60% sodium hydride $(0.30 \mathrm{~g}, 7.5 \mathrm{mmol})$. The reaction mixture was heated under argon at $60{ }^{\circ} \mathrm{C}$ for 90 h . The solution was then acidified with dilute HCl and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. After solvent removal, the solid residue was separated over a silica gel column $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{CCl}_{4}(1: 2 / \mathrm{v}: \mathrm{v})$ as eluent and get a light yellow solid (0.23 g), yield 16%. mp: $159-162{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$, ppm): $\delta=1.89\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$, $2.11\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 4.01\left(\mathrm{t}, 2 \mathrm{H},-\mathrm{OCH}_{2}\right), 4.43\left(\mathrm{t}, 2 \mathrm{H},-\mathrm{NCH}_{2}\right), 6.79(\mathrm{~s}, 1 \mathrm{H},=\mathrm{CH}), 6.91(\mathrm{~d}$, $2 \mathrm{H}, J=5.23 \mathrm{~Hz}, \mathrm{Ph}-\mathrm{H}), 7.25\left(\mathrm{t}, 2 \mathrm{H}, J_{1}=4.88 \mathrm{~Hz}, J_{2}=4.90 \mathrm{~Hz}, \mathrm{Ph}-\mathrm{H}\right), 7.42\left(\mathrm{~d}, 2 \mathrm{H}, J_{2}=\right.$ $8.06 \mathrm{~Hz}, \mathrm{Ph}-\mathrm{H}), 7.44-7.50(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ph}-\mathrm{H}), 7.53\left(\mathrm{t}, 1 \mathrm{H}, J_{1}=1.42 \mathrm{~Hz}, J_{2}=1.17 \mathrm{~Hz}, \mathrm{Ph}-\mathrm{H}\right)$, 7.93-7.97 (m, 4H, Ph-H), 8.11 (d, 2H, J = $7.63 \mathrm{~Hz}, \mathrm{Ph}-\mathrm{H}) . \mathrm{MS}(\mathrm{FAB}): m / z 463\left[\mathrm{M}^{+}+2\right]$, $462\left[M^{+}+1\right], 461\left[M^{+}\right], 222(26.13 \%), 180(100 \%)$. Anal. Calcd for $\mathrm{C}_{31} \mathrm{H}_{27} \mathrm{NO}_{3}$: C, 80.67; H, 5.90. Found: C, 80.38; H, 5.69.

Synthesis

1-[3,5-bis[4-(9H-carbazol-9-yl)butoxy]phenyl]-3-phenylpropane-1,3-dione (BCPD)
To a dry flask containing a solution of acetophenone ($0.39 \mathrm{~g}, 3.3 \mathrm{mmol}$) and Methyl 3,5-bis(4-(9H-carbazol-9-yl)butoxy)benzoate ($2.00 \mathrm{~g}, 3.28 \mathrm{mmol}$) in THF (80 mL) was added quickly 60% sodium hydride $(0.20 \mathrm{~g}, 5.0 \mathrm{mmol})$. The reaction mixture was heated under argon at $60{ }^{\circ} \mathrm{C}$ for 90 h . The solution was then acidified with dilute HCl and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. After solvent removal, the solid residue was separated over a silica gel column $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{CCl}_{4}(1: 5 / \mathrm{v}$:v) as eluent and get a light yellow solid (0.43 g), yield 19%. mp: $57-59{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$): $\delta=1.88\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right)$, $2.11\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 3.98\left(\mathrm{t}, 4 \mathrm{H},-\mathrm{OCH}_{2}\right), 4.41\left(\mathrm{t}, 4 \mathrm{H},-\mathrm{NCH}_{2}\right), 6.53(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ph}-\mathrm{H}), 6.75(\mathrm{~s}$, $1 \mathrm{H},=\mathrm{CH}), 7.04(\mathrm{~s}, 2 \mathrm{H}, \mathrm{Ph}-\mathrm{H}), 7.25\left(\mathrm{t}, 4 \mathrm{H}, J_{1}=7.2 \mathrm{~Hz}, J_{2}=7.3 \mathrm{~Hz}, \mathrm{Ph}-\mathrm{H}\right), 7.42-7.51(\mathrm{~m}$, $10 \mathrm{H}, \mathrm{Ph}-\mathrm{H}), 7.55\left(\mathrm{t}, 1 \mathrm{H}, J_{1}=7.2 \mathrm{~Hz}, J_{2}=7.0 \mathrm{~Hz}, \mathrm{Ph}-\mathrm{H}\right), 7.97(\mathrm{~d}, 2 \mathrm{H}, J=7.6 \mathrm{~Hz}, \mathrm{Ph}-\mathrm{H})$, $8.11(\mathrm{~d}, 4 \mathrm{H}, J=7.7 \mathrm{~Hz}, \mathrm{Ph}-\mathrm{H}) . \mathrm{MS}(\mathrm{FAB}): \mathrm{m} / \mathrm{z} 700\left[\mathrm{M}^{+}+2\right](7.6 \%), 699\left[\mathrm{M}^{+}+1\right](59 \%)$, $698\left[\mathrm{M}^{+}\right](95 \%), 218(38.7 \%), 222(54.3 \%), 180(100 \%)$. Anal. Calcd for $\mathrm{C}_{47} \mathrm{H}_{42} \mathrm{~N}_{2} \mathrm{O}_{4}$: C, 80.78; H, 6.06. Found: C, 80.50; H, 5.85 .

Synthesis of 1-[3,4,5-tris[4-(9H-carbazol-9-yl)butoxy]phenyl]-3- phenylpropane-

1,3-dione (TCPD)

To a dry flask containing a solution of acetophenone ($0.21 \mathrm{~g}, 1.76 \mathrm{mmol}$) and methyl 3,4,5-tris(4-(9H-carbazol-9-yl)butoxy)benzoate ($1.50 \mathrm{~g}, 1.76 \mathrm{mmol}$) in THF (60 mL) was added quickly 60% sodium hydride $(0.10 \mathrm{~g}, 2.5 \mathrm{mmol})$. The reaction mixture was heated at $60^{\circ} \mathrm{C}$ for 90 h under argon. The solution was then acidified with dilute HCl , and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. After solvent removal, the solid residue was purified via a silica gel column $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{CCl}_{4}(1: 2 / \mathrm{v}: \mathrm{v})$ as eluent to get a light yellow oil (0.49 g), yield 30%. $\mathrm{mp} 71{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$): $\delta=1.60\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.74\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right)$, $1.94\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{CH}_{2}\right), 3.88\left(\mathrm{t}, 2 \mathrm{H},-\mathrm{OCH}_{2}\right), 3.94\left(\mathrm{t}, 4 \mathrm{H},-\mathrm{OCH}_{2}\right), 4.12\left(\mathrm{t}, 2 \mathrm{H},-\mathrm{NCH}_{2}\right), 4.22(\mathrm{t}$, $\left.4 \mathrm{H},-\mathrm{NCH}_{2}\right), 6.65(\mathrm{~s}, 1 \mathrm{H},=\mathrm{CH}), 7.08(\mathrm{~s}, 2 \mathrm{H}, \mathrm{Ph}-\mathrm{H}), 7.17-7.21(\mathrm{~m}, 6 \mathrm{H}, \mathrm{Ph}-\mathrm{H}), 7.25-$ 7.28 (m, 2H, Ph-H), $7.30-7.32(\mathrm{~d}, 4 \mathrm{H}, \mathrm{J}=8.2 \mathrm{~Hz}, \mathrm{Ph}-\mathrm{H}), 7.37-7.41(\mathrm{~m}, 6 \mathrm{H}, \mathrm{Ph}-\mathrm{H})$, $7.47\left(\mathrm{t}, 2 \mathrm{H}, J_{1}=7.8 \mathrm{~Hz}, J_{2}=7.5 \mathrm{~Hz}, \mathrm{Ph}-\mathrm{H}\right), 7.54\left(\mathrm{t}, 1 \mathrm{H}, J_{1}=7.9 \mathrm{~Hz}, J_{2}=7.8 \mathrm{~Hz}\right), 7.92(\mathrm{~d}$, $2 \mathrm{H}, J=7.2 \mathrm{~Hz}$), $8.07\left(\mathrm{t}, 6 \mathrm{H}, J_{1}=7.6 \mathrm{~Hz}, J_{2}=6.8 \mathrm{~Hz}, \mathrm{Ph}-\mathrm{H}\right) . \mathrm{MS}(\mathrm{FAB}): \mathrm{m} / \mathrm{z} 974.4\left[\mathrm{M}^{+}+\right.$ K], $958.4\left[\mathrm{M}^{+}+\mathrm{Na}\right]$. Anal. Calcd for $\mathrm{C}_{63} \mathrm{H}_{57} \mathrm{~N}_{3} \mathrm{O}_{5}: \mathrm{C}, 80.83$; H, 6.14. Found: C, 80.58; H, 5.87.

Synthesis

Tris[1-[4-[4-(9H-carbazol-9-yl)butoxy]phenyl]-3-phenylpropane-1,3-dione]

(1,10-phenanthroline) Europium (III) (Eu(MCPD) $\mathbf{3}^{(P h e n)) ~}$

To a solution of MCPD ($120 \mathrm{mg}, 0.26 \mathrm{mmol}$) and 1,10-phenanthroline monohydrate (18 $\mathrm{mg}, 90.9 \mu \mathrm{~mol}$) in THF (10 mL), 1 M aqueous $\mathrm{NaOH}(0.2 \mathrm{~mL})$ was syringed dropwise followed by aqueous EuCl_{3} hexahydrate ($31.7 \mathrm{mg}, 87.4 \mu \mathrm{~mol}$). After injection of argon repeatedly, the mixture was stirred at $60^{\circ} \mathrm{C}$ for 4 h and then cooled. The product was collected by filtration and washed with deionized water twice before crystallization with acetone and vacuum drying. (112 mg), yield 76%. mp: $110-113{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}, \mathrm{ppm}\right): \delta=1.72\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{2}\right), 2.17\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{2}\right), 3.77\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{2}\right), 4.35(\mathrm{~s}, 6 \mathrm{H}$, CH_{2}), $5.59(\mathrm{~s}, 6 \mathrm{H},=\mathrm{CH}, \mathrm{Ph}-\mathrm{H}), 5.95(\mathrm{~s}, 6 \mathrm{H}, \mathrm{Ph}-\mathrm{H}), 6.20(\mathrm{~s}, 6 \mathrm{H}, \mathrm{Ph}-\mathrm{H}), 6.61(\mathrm{~m}, 12 \mathrm{H}$, Ph-H), 7.26-7.46 (m, 15H, Ph-H), 8.11 (d, 9H, Ph-H), 8.97 (s, 2H, Ph-H), 9.90 (s, 2H,

Ph-H), 10.64 (s, 2H, Ph-H), 11.01 (s, 2H, Ph-H); MS (FAB): m/z $1752.6\left[\mathrm{M}^{+}+\mathrm{K}\right]$, $1736.7\left[\mathrm{M}^{+}+\mathrm{Na}\right], 1714\left[\mathrm{M}^{+}\right]$. Anal. Calcd for $\mathrm{C}_{105} \mathrm{H}_{86} \mathrm{EuN}_{5} \mathrm{O}_{9}$: C, 73.59; H, 5.06. Found: C, 73.21; H, 4.69.

Synthesis of Tris[1-[3,5-bis[4-(9H-carbazol-9-yl)butyloxy]phenyl]-3-phenylpropane-1,3-dione] (1,10-phenanthroline) Europium (III) (Eu(BCPD) $\mathbf{3}^{(P h e n)) ~}$

To a solution of BCPD $(0.10 \mathrm{~g}, 0.14 \mathrm{mmol})$ and 1,10-phenanthroline monohydrate (11.3 $\mathrm{mg}, 57.2 \mu \mathrm{~mol})$ in THF (10 mL), 1 M aqueous $\mathrm{NaOH}(0.20 \mathrm{~mL})$ was syringed dropwise followed by aqueous EuCl_{3} hexahydrate ($17.5 \mathrm{mg}, 48.2 \mu \mathrm{~mol}$). After injection of argon repeatedly, the mixture was stirred at $60^{\circ} \mathrm{C}$ for 4 h and then cooled. The product was collected by filtration and washed with deionized water twice before crystallization with acetone and vacuum drying (57 mg), yield 49%. mp: 89-92 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}, \mathrm{ppm}\right): \delta=1.56\left(\mathrm{~s}, 12 \mathrm{H}, \mathrm{CH}_{2}\right), 1.86\left(\mathrm{~s}, 12 \mathrm{H}, \mathrm{CH}_{2}\right), 3.51\left(\mathrm{~s}, 12 \mathrm{H}, \mathrm{CH}_{2}\right), 4.24(\mathrm{~s}$, $\left.12 \mathrm{H}, \mathrm{CH}_{2}\right), 5.67(\mathrm{~s}, 3 \mathrm{H},=\mathrm{CH}), 6.00(\mathrm{~s}, 6 \mathrm{H}, \mathrm{Ph}-\mathrm{H}), 6.61(\mathrm{~m}, 9 \mathrm{H}, \mathrm{Ph}-\mathrm{H}), 7.26(\mathrm{~m}, 12 \mathrm{H}$, Ph-H), 7.40 (m, 30H, Ph-H), 8.10 (s, $J=5.5 \mathrm{~Hz}, 15 \mathrm{H}, \mathrm{Ph}-\mathrm{H}), 7.97$ (d, $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}$, Ph-H), 8.52 (s, 2H, Ph-H), 10.42 (s, 2H, Ph-H), 10.73 (s, 2H, Ph-H); MALDI-TOF MS: $m / z\left[\mathrm{M}^{+}\right]$2425. Anal. Calcd for $\mathrm{C}_{153} \mathrm{H}_{131} \mathrm{EuN}_{8} \mathrm{O}_{12}$: C, 75.76; H, 5.44. Found: C, 75.28; H, 5.07.

Synthesis of Tris[1-[3,4,5-tris[4-(9H-carbazol-9-yl)butoxy]phenyl]-3-phenyl-propane- 1,3- dione] (1,10- phenanthroline) Europium (III) (Eu(TCPD) $\mathbf{3}_{\mathbf{3}}$ (Phen))

To a solution of TCPD ($226 \mathrm{mg}, 240 \mu \mathrm{~mol}$) and 1,10-phenanthroline monohydrate (16 $\mathrm{mg}, 81 \mu \mathrm{~mol})$ in THF (10 mL), 1 M aqueous $\mathrm{NaOH}(0.38 \mathrm{~mL})$ was syringed dropwise, followed by aqueous $\mathrm{EuCl}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}(29.4 \mathrm{mg}, 80 \mathrm{mmol})$. The mixture was stirred at $60{ }^{\circ} \mathrm{C}$ for 4 h under the protection of nitrogen. After cooled, the product was filtrated, washed with deionized water, and recrystallized from acetone to give $\mathrm{Eu}(\mathrm{TCPD})_{3}(\mathrm{Phen})(180 \mathrm{mg})$, yield 72%. mp $84-87{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$): $\delta=1.22-2.03(\mathrm{~m}, 36 \mathrm{H}$, CH_{2}), 3.28-4.40 (s, 36H, CH 2), $6.19(\mathrm{~s}, 3 \mathrm{H},=\mathrm{CH}), 6.44(\mathrm{~s}, 6 \mathrm{H}, \mathrm{Ph}-\mathrm{H}), 7.08-7.47(\mathrm{~m}$, 66H, Ph-H), 7.93-8.06 (m, 21H, Ph-H), 8.52 (s, 2H, Ph-H), 9.21 (s, 2H, Ph-H), 10.36 (s, $2 \mathrm{H}, \mathrm{Ph}-\mathrm{H}), 10.64(\mathrm{~s}, 2 \mathrm{H}, \mathrm{Ph}-\mathrm{H})$. MALDI-TOF MS: $\mathrm{m} / \mathrm{z} \quad\left[\mathrm{M}^{+}\right]$3143.6. Anal. Calcd for $\mathrm{C}_{201} \mathrm{H}_{176} \mathrm{EuN}_{11} \mathrm{O}_{15}$: C, 76.94; H, 5.65 Found: C, 76.58; H, 5.28.

Fig. S1 MALDI-TOF mass spectrum of dendritic Europium complex Eu(TCPD) $3_{3}($ Phen $)$.

Fig. S2 Schematic diagram of energy transfer in Eu (III) complexes. D and F are corresponding to Eu (III) ion energy levels.

Fig. S3 Five peaks at $586,591,615,651$ and 702 nm are corresponding to ${ }^{5} \mathrm{D}_{0} \rightarrow{ }^{7} \mathrm{~F}_{\mathrm{j}}(\mathrm{j}=0-4)$ transitions, respectively.

Fig. S4 CIE chromaticity coordinate $(0.333,0.348)$ of EL device with the configuration of ITO/NPB/CBP: $\mathrm{Eu}(\mathrm{TCPD})_{3}(\mathrm{Phen}) / \mathrm{BCP} / \mathrm{Mg}: \mathrm{Ag}$ at the applied voltage of 16.2 V .

