
Supplementary information 

 

Collection and refinement of diffraction data 

X-ray data were refined with 6 background terms in function no 2 and Gaussian, Lorentzian 

and asymmetry terms in profile type 2.  Lattice parameters, atom positions and isotropic 

temperature factors were refined to convergence. 

The Osiris diffractometer at the ISIS spallation source was used to collect high d-spacing 

PND patterns.  The collected data range was 13-140 µs (0.747-8.06 Å).  Osiris data were 

refined with a linear absorption function, GSAS time-of-flight peak profile type no. 2 and 6 

shifted Chebyshev (function number 1) background terms.  Atom positions, magnetic moment 

and lattice parameters were freely refined but temperature factors could not be refined, 

presumably due to the lack of low d-spacing reflections.  These were fixed at a small, positive 

value.  The nuclear structures based on this data must therefore be considered of low 

resolution, though this does not affect the magnetic structure. 

The high resolution diffractometer D2B at the Institut Laue Langevin was used to collect 

PND data for Sr2FeO3F at 3 K; data were collected at the optimum wavelength for 

instrumental resolution (1.59 Å) and at 2.40 Å to better resolve the high d-spacing reflections.  

Data sets at ambient temperature and 2 K were also collected on the Sr2Fe1-xCoxO3Cl series 

with λ = 1.59 Å.  All the D2B data was refined with 8 background parameters in a cosine 

Fourier series (GSAS function number 2) and constant wavelength peak profile type 2.  

Linear absorption, zero point, atom positions, magnetic moments and isotropic temperature 

factors were refined to convergence. 

The very high intensity diffractometer D20 at the ILL was used to collect variable 

temperature diffraction data for Sr2FeO3F.  The wavelength used was 2.40 Å and a graphite 

filter was used to remove harmonics.  This data was refined with 4 background terms in 



GSAS function no. 2 and peak profile type 2.  Data sets were truncated (20-65° was used) to 

focus on the magnetic region and hence peak shape was refined once then fixed.  Atom 

positions were fixed at the values obtained from the D2B data.  For each phase lattice 

parameters, zero point, histogram scale factor, background and µx (= µy) were refined. 

 

Representational analysis of the Sr2FeO3F magnetic structure 

Representational analysis1-8 allows the determination of the symmetry allowed magnetic 

structures that can result from a second-order magnetic phase transition, given the crystal 

structure before the transition and the propagation vector of the magnetic ordering.  These 

calculations were carried out using the program Sarah-Representational Analysis9 and 

magnetic structures based on this representational analysis were refined using the GSAS front 

end Sarah-Refine.  Labelling of the propagation vector and the irreducible representations 

follows the scheme used by Kovalev.10 

The crystallographic space group of Sr2FeO3F is P4/nmm.  The set of magnetic peaks which 

persist to ambient temperature can be described with a propagation vector k = [½ ½ 0] – a  

doubling of the crystallographic axis along the a and b axes consistent with xy 

antiferromagnetic ordering.  The decomposition of the magnetic representation Γmag in terms 

of the non-zero IRs of Gk for the iron site, and their associated basis vectors, ψn, are given in 

Table S1.  Γ1 describes the La2NiO4-type magnetic structure whereas Γ2 is La2CuO4-type.  Γ3 

describes structures with the moments pointing along z.  Hence Γ2 gives a good fit to the 

magnetic peaks which persist to room temperature (and also to the data from oxide chlorides 

and oxide bromides discussed previously).  ψ3 and ψ4 both produce orthogonal structures if 

used individually; to produce collinear structures (which fit the data equally well) a mixture of 

ψ3 and ψ4 must be used. 



Representational analysis was used to determine whether it was possible to describe the 

magnetic peaks with a single structural model.  We showed previously,1 though with lower 

resolution data, that a single model could apparently fit the peaks through an unusual rotation 

of the moments in the xy plane.  The variable temperature data in Fig. 6 show that the peaks 

corresponding to k = [½ ½ ½] decay with temperature much more quickly than the remaining 

magnetic peaks.  This was taken as evidence of a separate magnetic phase which was 

indistinguishable in nuclear structure, e.g. small changes in defect structure. 

 

Table S1.  Irreducible representations and associated basis vectors for the space group 

P4/nmm (setting 2) with k = [½ ½ 0]. 

  Fe at ¾,¾,0.22 Fe at ¼,¼,0.78 

IR BV mx my mz mx my mz 

Γ1 ψ1 1 0 0 0 -1 0 

 ψ2 0 1 0 -1 0 0 

Γ2 ψ3 0 1 0 1 0 0 

 ψ4 -1 0 0 0 -1 0 

Γ3 ψ5 0 0 0 0 0 -1 

 ψ6 0 0 1 0 0 0 

 

For a second-order transition a powerful simplification to the number of possible structures 

arises as a consequence of the Landau theory – the ordering transition can involve only one 

irreducible representation becoming critical.  Accordingly, the basis vectors17 involved in the 

resulting structure are limited to those associated with a single IR and the number of 

“symmetry allowed” magnetic structures possible for a particular crystallographic site is 

simply the number of nonzero IRs in the decomposition of its magnetic representation.  There 



are two possibilities to describe the Sr2FeO3F magnetic structure.  The first is that there are 

two distinct P4/nmm phases present, with indistinguishable nuclear structures but with 

magnetic ordering temperatures well above room temperature (k = [½ ½ 0]) and around 60 K 

(k = [½ ½ ½]).  The second is that a further phase change occurs to the already ordered phase 

when cooled below ca 100 K, this would be described by the propagation vector k = [0 0 ½]) 

in the P 4 21m structure developed above. 

The results of representational analysis to describe these cases are summarized in Tables S2 

and S3.  All symmetry allowed structures which describe a c-axis doubling have the moments 

in the top half of the cell exactly opposed to the moments of the corresponding atoms in the 

bottom half of the cell.  Small rotations in opposite directions within the xy plane, as we 

described previously1 when developing a single phase magnetic structure to describe 

Sr2FeO3F, are not symmetry allowed.  Hence two magnetic phases must be present below ca.  

 

Table S2.  Irreducible representations and associated basis vectors for the space group 

P4/nmm (setting 2) with k = [½ ½ ½]. 

  Fe at ¾,¾,0.22 Fe at ¼,¼,0.78 

IR BV mx my mz mx my mz 

Γ1 ψ1 1 0 0 0 1 0 

 ψ2 0 1 0 1 0 0 

Γ2 ψ3 0 1 0 -1 0 0 

 ψ4 -1 0 0 0 1 0 

Γ3 ψ5 0 0 0 0 0 1 

 ψ6 0 0 1 0 0 0 

 



100 K.  The results of the representational analysis are actually the same, any one of ψ1-ψ4 in 

Table S2 and ψ1, ψ2, ψ4 or ψ5 in Table S3 describe a structure in which the layer stacking 

alternates between a La2NiO4-type sequence and a La2CuO4-type sequence.  They result in 

intensity on the ½½½, ½½3/2, ½½5/2 and ½½7/2 magnetic reflections but no intensity on other 

magnetic peaks in this region of the diffraction pattern. 

 

Table S3.  Nonzero irreducible representations and associated basis vectors for the space 

group P 4 21m with k = [0 0 ½]. 

  Fe at ¼,¼,0.22 Fe at ¾,¾,0.22 Fe at ¼,¾,0.78 Fe at ¾,¼,0.78 

IR BV mx my mz mx my mz mx my mz mx my mz 

Γ1 ψ1 1 1 0 -1 -1 0 1 -1 0 -1 1 0 

Γ2 ψ2 1 -1 0 -1 1 0 -1 -1 0 1 1 0 

 ψ3 0 0 1 0 0 1 0 0 -1 0 0 -1 

Γ3 ψ4 1 1 0 -1 -1 0 -1 1 0 1 -1 0 

Γ4 ψ5 1 -1 0 -1 1 0 1 1 0 -1 -1 0 

 ψ6 0 0 1 0 0 1 0 0 1 0 0 1 

Γ5 ψ7 1 0 0 1 0 0 0 0 0 0 0 0 

 ψ8 0 1 0 0 1 0 0 0 0 0 0 0 

 ψ9 0 0 1 0 0 -1 0 0 0 0 0 0 

 ψ10 0 0 0 0 0 0 -1 0 0 -1 0 0 

 ψ11 0 0 0 0 0 0 0 1 0 0 1 0 

 ψ12 0 0 0 0 0 0 0 0 1 0 0 -1 
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