Novel Distyrylcarbazole Derivatives as Hole-Transporting Blue Emitters for

Electroluminescent Devices

Fang-Iy Wu, Ping-I Shih, Mao-Chuan Yuan, Ajay Kumar Dixit, Ching-Fong Shu,*

Zhu-Ming Chung, and Eric Wei-Guang Diau*

Department of Applied Chemistry, Institute of Molecular Science and Center for

Interdisciplinary Molecular Science, National Chiao Tung University,

Hsinchu, Taiwan, 30010

Details of experimental procedure and fabrication of light-emitting devices.

Experimental Section

2,7-Dibromo-9*H*-carbazole (1), 1 2,2-diphenylvinyl General Procedures. 2 bromide, 3.6-dibromo-9-*p*-tolylcarbazole (5). and 4,4'-bis(2,2-diphenylvinyl)-1,1'-biphenyl (**DPVBi**)⁴ were synthesized as reported The electron-transporting previously. material. 1,3,5-tris(N-phenylbenzimidazol-2-yl)benzene (TPBI),⁵ was prepared according to reported procedures, and was sublimed twice before use. The solvents were dried according to standard procedures; all other reagents were used as received from commercial sources, unless otherwise stated. Differential scanning calorimetry (DSC) was performed (Seiko Exstar 6000DSC) at a heating rate 20 °C min⁻¹ and a cooling rate 40 °C min⁻¹. Samples were scanned from 30 to 320 °C, cooled to 0 °C, and then scanned again to 320 °C. The temperature (T_{σ}) of the glass transition was determined from the second heating scan. Thermogravimetric analysis (TGA) was undertaken (DuPont TGA 2950 instrument). The thermal stability of samples under a nitrogen atmosphere was determined by measuring their loss of mass during heating at a rate 20 °C min⁻¹. We measured UV–visible spectra (HP 8453 diode-array spectrophotometer) and photoluminescence (PL) spectra (Hitachi F-4500 luminescence spectrometer). For cyclic voltammetry (CV) measurements (BAS 100 B/W electrochemical analyzer, we undertook oxidation and reduction measurements in anhydrous CH₂Cl₂ and anhydrous THF, respectively, containing $TBAPF_6$ (0.1 M) as the supporting electrolyte, at a scan rate 50 mV s⁻¹. The potentials were measured against an Ag/Ag⁺ (0.01 M AgNO₃) reference electrode with ferrocene as an internal standard.

2,7-Dibromo-9-isopropylcarbazole (2). A mixture of 2,7-dibromo-9*H*-carbazole (1; 2.00 g, 6.15 mmol), 2-bromopropane (2.3 mL, 24.6 mmol), K₂CO₃ (3.40 g, 24.6 mmol) and NMP (20 mL) was heated at 75 °C for 12 h. The reaction mixture was added to water (300 mL) and the precipitate was collected on filtration. The product was purified by recrystallization from ethanol to give **2** (1.00 g, 44.3 %). ¹H NMR (300 MHz, CDCl₃) δ 1.67 (d, *J* = 7.0 Hz, 6H), 4.85 (septet, *J* = 7.0 Hz, 1H), 7.31 (dd, *J* = 8.3, 1.6 Hz, 2H), 7.64 (d, *J* = 1.6 Hz, 2H) 7.88 (d, *J* = 8.3 Hz, 2H). ¹³C NMR (75 MHz, CDCl₃) δ 20.7, 47.2, 113.2, 119.4, 121.4, 121.7, 122.3, 140.3. HRMS [M⁺]: calcd. for C₁₅H₁₃N⁷⁹Br₂ 364.9415, found 364.9407.

2,7-Dibromo-9-*p***-tolylcarbazole (3)**. A mixture of **1** (0.45 g, 1.38 mmol), 4-iodotoluene (1.52 g, 6.97 mmol), copper (0.12 g, 1.89 mmol), [18]crown-6 (25.0 mg, 0.09 mmol), K₂CO₃ (0.52 g, 3.77 mmol) and 1,2-dichlorobenzene (10 mL) was heated at 180 °C for 16 h. This mixture was filtered and concentrated under reduced pressure. The product was purified through column chromatography on silica gel with hexane as eluent to yield **3** (0.35 g, 59.6 %). ¹H NMR (300 MHz, CDCl₃) δ 2.48 (s, 3H) 7.35 (d, *J* = 8.4 Hz, 2H), 7.37 (dd, *J* = 8.3, 1.6 Hz, 2H), 7.41 (d, *J* = 8.4 Hz, 2H),

7.44 (d, J = 1.6 Hz, 2H), 7.92 (d, J = 8.3 Hz, 2H). ¹³C NMR (75 MHz, CDCl₃) δ 21.4, 113.1, 120.0, 121.5, 121.6, 123.5, 127.0, 130.9, 133.8, 138.5, 142.1. HRMS [M⁺]: calcd. for C₁₉H₁₃N⁷⁹Br₂ 412.9415, found 412.9413.

2-(2,2-Diphenylvinyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (4). *n*-Butyllithium in hexane (2.5 M, 40 mL) was added slowly under nitrogen to a stirred solution of 2,2-diphenylvinyl bromide (13.0 g, 50.2 mmol) in THF (80 mL) at -78 °C and then the mixture was stirred further for 2 h. *n*-Butyl borate (30 mL, 111 mmol) was added at -78 °C before the mixture was warmed slowly to room temperature and stirred overnight. Water (50 mL) was added, followed by conc. HCl to acidify the mixture (to pH \sim 2), which was then stirred for 2 h. The reaction mixture was extracted with EtOAc and the combined organic phases were dried over MgSO₄. Concentration under reduced pressure gave 2,2-diphenylvinyl boronic acid, which, without further purification, was reacted with pinacol (8.50 g, 72.0 mmol) in benzene (100 mL) under reflux for 3 h to effect condensation by the azeotropic removal of the water formed. The mixture was concentrated under reduced pressure and the residue was purified by column chromatography (hexane/EtOAc) to afford 4 (7.53 g, 49%). 1 H NMR (300 MHz, CDCl₃): δ 1.18 (s, 12H), 6.03 (s, 1H), 7.28–7.36 (m, 10 H). ¹³C NMR (75 MHz, CDCl₃): δ 24.7, 83.2, 127.6, 127.7, 128.0, 128.1, 129.9, 141.9, 143.2, 159.9. HRMS $[M^+]$: calcd. for C₂₀H₂₃BO₂, 306.1791; found 306.1796.

2,7-Bis(2,2-diphenylvinyl)-9-isopropylcarbazole (DPVICz). A mixture of **2** (1.00 g, 2.72 mmol), **4** (2.08 g, 6.79 mmol), aliquat 336 (274 mg), aqueous K₂CO₃ (2.0 M, 7.0 mL), and toluene (15 mL) was degassed; then tetrakis(triphenylphosphine)palladium (31 mg, 2.68 µmol) was added in one portion under nitrogen. After heating at 105 °C for 2 h, the reaction mixture was poured into water (50 mL) and extracted with EtOAc (50 mL × 3). The organic extracts were dried (MgSO₄) and concentrated. The crude product was purified on recrystallization from EtOAc, followed by temperature-gradient sublimation to give **DPVICz** (1.08 g, 70.1 %). ¹H NMR (300 MHz, CDCl₃) δ 1.17 (d, *J* = 7.0 Hz, 6H), 4.27 (septet, *J* = 7.0 Hz, 1H), 6.98–7.02 (m, 4H), 7.17 (s, 2H), 7.26–7.41 (m, 20H), 7.82 (d, *J* = 8.4 Hz, 2H). ¹³C NMR (75 MHz, CDCl₃) δ 20.4, 46.0, 110.6, 119.6, 121.5, 122.0, 127.26, 127.34, 127.5, 128.2, 128.8, 129.3, 130.5, 134.5, 139.8, 141.0, 141.6, 143.5. HRMS [M⁺]: calcd. for C₄₃H₃₅N 565.2769, found 565.2766. Anal. Calcd for C₄₃H₃₅N: C, 91.29; H, 6.24; N, 2.48. Found: C, 91.31; H, 6.29; N, 2.20.

2,7-Bis(2,2-diphenylvinyl)-9-*p*-tolylcarbazole (DPVTCz). Using the procedure described for DPVICz, the reaction between **3** and **4**, followed by temperature-gradient sublimation, gave DPVTCz in 67.7% yield. ¹H NMR (300 MHz, CDCl₃) δ 2.42 (s, 3H), 6.72 (d, J = 8.4 Hz, 2H), 6.94 (d, J = 1.4 Hz, 2H), 7.01 (dd, J = 8.1, 1.4 Hz, 2H), 7.07 (s, 2H), 7.09 (d, J = 8.4 Hz, 2H), 7.16–7.20 (m, 4H),

3

7.25–7.31 (m, 16H), 7.82 (d, J = 8.1 Hz, 2H). ¹³C NMR (75 MHz, CDCl₃) δ 21.3, 110.8, 119.6, 121.9, 122.3, 126.0, 127.1, 127.4, 127.5, 128.2, 128.6, 129.1, 130.1, 130.6, 134.2, 135.2, 136.3, 140.7, 141.0, 142.1, 143.5. HRMS [M⁺]: calcd. for C₄₇H₃₅N 613.2769, found 613.2775. Anal. Calcd for C₄₇H₃₅N: C, 91.97; H, 5.75; N, 2.28. Found: C, 91.84; H, 6.07; N, 2.26.

3,6-Bis(2,2-diphenylvinyl)-9-*p*-tolylcarbazole (**3,6-DPVTCz**). Using the procedure described for DPVICz, the reaction between 3,6-dibromo-9-*p*-tolylcarbazole **5** and **4**, followed by temperature-gradient sublimation, gave **3,6-DPVTCz** in 51.6 % yield. ¹H NMR (300 MHz, CDCl₃) δ 2.43 (s, 3H), 7.00 (dd, J = 8.9, 1.8 Hz, 2H), 7.06 (d, J = 8.9 Hz, 2H), 7.14 (s, 2H), 7.24-7.40 (m, 24H),7.57 (d, J = 1.8 Hz, 2H). ¹³C NMR (75 MHz, CDCl₃) δ 21.2, 109.2, 121.4, 123.0, 126.6, 127.1, 127.2, 127.4, 127.7, 128.2, 128.7, 128.8, 129.5, 130.3, 130.5, 134.6, 137.3, 140.1, 140.4, 140.8, 143.7. HRMS [M⁺]: calcd. for C₄₇H₃₅N 613.2769, found 613.2767. Anal. Calcd for C₄₇H₃₅N: C, 91.97; H, 5.75; N, 2.28. Found: C, 91.63; H, 5.84; N, 2.14.

Fabrication of Light-emitting Devices. The devices were fabricated in the configuration ITO/emitting layer (65 nm) /TPBI (15 nm) / Mg:Ag (100 nm) / Ag (100 nm). The organic layer was grown by thermal sublimation under vacuum $(3 \times 10^{-6} \text{ torr})$. TPBI was used as an electron-transporting and hole-blocking layer to enhance charge recombination and exciton confinement.⁶ A cathodic Mg:Ag (10:1, 100 nm) alloy was subsequently deposited by co-evaporation onto the TPBI layer, and an additional Ag protection layer (100 nm) was placed onto the alloy. The active area was 9 mm². The current–voltage–luminance characteristics (Keithley 2400 source meter, Newport 1835C optical meter equipped with an 818ST silicon photodiode) were measured under ambient conditions.

¹ F. Dierschke, A. C. Grimsdale and K. Müllen, *Synthesis.*, 2003, 2470.

² S. M. Korneev and D. E. Kaufmann, *Synthesis.*, 2002, 491.

³ S. W. Cha and J.-I. Jin, J. Mater. Chem., 2003, **13**, 479.

⁴ H. Tokailin, H. Higashi and C. Hosokawa, U.S. Patent 5130630, 1992.

⁵ J. Shi, C. W. Tang and C. H. Chen, U.S. Patent 5645948, 1997.

⁶ S. W. Culligan, Y. Geng, S. H. Chen, K. Klubek, K. M. Vaeth and C. W. Tang, *Adv. Mater.*, 2003, **15**, 1176