Electronic Supplementary Information

A Mild and Efficient Si (111) Surface Modification via Hydrosilylations of Activated Alkynes

Yang Liu,^{a,c} Shoko Yamazaki,^{a,c}* Shinichi Yamabe^a and Yoshihiro Nakato^{b,c} ^aDepartment of Chemistry, Nara University of Education, Takabatake-cho, Nara 630-8528, Japan ^bDivision of Chemistry, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan ^cThe Core Research for Evolutional Science and Technology, The Japan Science and Technology Agency (JST), Kawaguchi, Saitama, Japan E-mail: yamazaks@nara-edu.ac.jp

Contents

- [1] XPS spectra (Figures S1-4)
- [2] The STO-3G*-optimized structures of $Si_{62}H_{56}$ and $\bullet Si_{62}H_{55}$ (Figures S5-6)

Figure S1. XPS spectra of functionalized Si(111) surface 4f.

Figure S2. XPS spectra of functionalized Si(111) surface 4k.

Figure S4. XPS spectra of functionalized Si(111) surface 4n.

Figure S5. RHF/STO-3G*-optimized geometry of Si₆₂H₅₆. Blue patterned atoms are silicon atoms and white atoms are hydrogen. An arrow shows the removed hydrogen.

Figure S6. UHF/STO-3G*-optimized geometry of Si_{62}H_{55} radical. An arrow shows silicon radical.