Electronic Supplementary Information (ESI) service

New unsymmetrical donor dimethyl(ethylenedioxy)tetraselenafulvalene (DMEDO-TSeF): structures and properties of its cation radical salts

Takashi Shirahata, Megumi Kibune and Tatsuro Imakubo

Imakubo Initiative Research Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan. E-mail: tsirahat@riken.jp, imakubo@riken.jp

Synthesis

Dimethyl(ethylenedioxy)tetraselenafulvalene (DMEDO-TSeF)

To a mixture of selone 1 (226 mg, 0.68 mmol) and selone 2 (215 mg, 0.71 mmol) in benzene (90 ml) was added hexamethylphosphorous triamide (HMPT 0.74 ml, 4.08 mmol), and the solution was stirred for 2 hours under argon atmosphere. After the removal of the solvent under reduced pressure, the crude products were separated by column chromatography (SiO₂/CS₂–CH₂Cl₂) and then purified by preparative gel permeation chromatography (GPC/CS₂). The target DMEDO-TSeF was isolated as purple red needles (31 mg, 0.065 mmol, 10%) together with the self-coupling products TMTSF (12.5 mg, 0.028 mmol, 8%) and BEDO-TSeF (18.7 mg, 0.0368 mmol, 11%).

DMEDO-TSeF: mp 199 °C (decomp.); m/z (EI, 70 eV): 480 (M⁺ for $C_{10}H_{10}O_2^{78}Se^{80}Se_3$); δ_H (270 MHz, CD_2Cl_2) 4.27 (4H, s, OCH_2CH_2O), 2.00 (6H, s, CH_3); IR (neat, v/cm^{-1}) 1624 (s), 1443 (m), 1368 (m), 1268 (m), 1240 (w), 1134 (s); Elemental analysis: Calc. for $C_{10}H_{10}O_2Se_4$: C, 25.13; H, 2.11. Found: C, 25.14; H, 2.11%.

X-ray crystal structure analysis for neutral DMEDO-TSeF

CCDC reference number is 281659

Table 1. Crystal data and structure refinement for DMEDO-TSeF.

Empirical formula $C_{10}H_{10}O_2Se_4$

Formula weight 478.02

Temperature 293 K

Wavelength 0.71073 Å

Crystal system Monoclinic

Space group $P2_1/c$ (#14)

Unit cell dimensions a = 13.958(4) Å $\alpha = 90^{\circ}$.

b = 8.285(2) Å $\beta = 109.478(6)^{\circ}$.

c = 11.867(3) Å $\gamma = 90^{\circ}$.

Volume 1293.8(6) Å³

Z 4

Density (calculated) 2.454 Mg/m³
Absorption coefficient 11.323 mm⁻¹

F(000) 888

Crystal size $0.50 \times 0.06 \times 0.05 \text{ mm}^3$

Theta range for data collection 1.55 to 28.48°.

Index ranges -16 <= h <= 18, -9 <= k <= 11, -15 <= l <= 15

Reflections collected 9395

Independent reflections $3223 (R_{int} = 0.0571)$

Completeness to theta = 28.48° 98.9 %

Absorption correction Empirical (SADABS; Sheldrick 1996)

Max. and min. transmission 0.6013 and 0.0703

Refinement method Full-matrix least-squares on F^2

Data / restraints / parameters 3223 / 0 / 147

Goodness-of-fit on F^2 1.076

Final *R* indices [$I > 2\sigma(I)$] $R_1 = 0.0501$, $wR_2 = 0.1262$

 $R_1 = 0.0790, wR_2 = 0.1405$

Largest diff. peak and hole $0.718 \text{ and } -0.792 \text{ e Å}^{-3}$

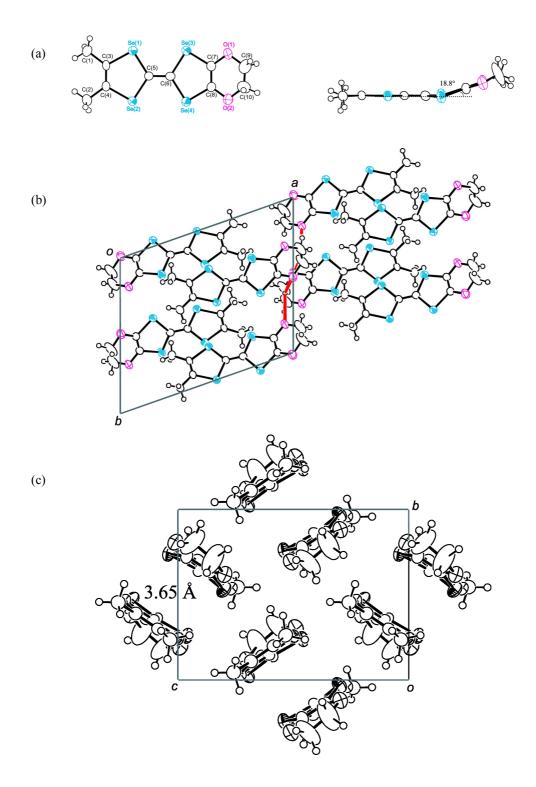


Fig. 1 Crystal structure of DMEDO-TSeF: (a) molecular structures; (b) crystal packing diagram viewed along the crystallographic c-axis, the orange line indicate short CH···O contacts shorter than 3.0 Å; (c) κ -type layer structure viewed along the crystallographic a-axis.

Band calculation

Intermolecular overlap integrals were calculated using HOMOs of the donor molecules obtained by the extended Hückel MO calculations using semiempirical parameters for the s and p Slater-type atomic orbitals listed in Table 3. The transfer integral (t) is approximately in proportion to the overlap integral (S), $t = \varepsilon S$ ($\varepsilon = -10$ eV; ε is a constant with order of the orbital energies of HOMOs). The electronic band dispersions and Fermi surfaces were calculated using the intermolecular overlap integrals under the tight-binding approximation.¹

Table 2 Calculated overlap integrals $S \times 10^{-3}$ for (DMEDO-TSeF)₂X (X = PF₆, AsF₆ and SbF₆)

		•	·
	PF_6	AsF_6	SbF ₆
р	-26.49	-21.28	-20.82
q	-27.06	-22.50	-22.03
r	-0.28	-1.71	-0.84
S	-2.22	0.51	3.81
t	-0.68	0.26	1.69

Table 3 Semi-empirical parameters for Slater-type orbitals

orbitals	ξ	$I_{\rm P}$ / Ry
Se 4s	2.44	-1.40
Se 4p	2.07	-0.74
O 2s	2.275	-2.375
O 2p	2.275	-1.088
C 2s	1.625	-1.573
C 2p	1.625	-0.838
H 1s	1.30	-1.0

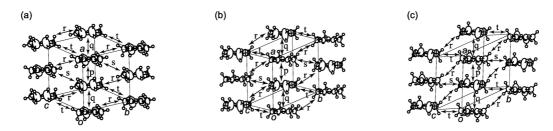


Fig. 2 Donor arrangement of $(DMEDO-TSeF)_2X$; (a) $X = PF_6$, (b) $X = AsF_6$ and (c) $X = SbF_6$.

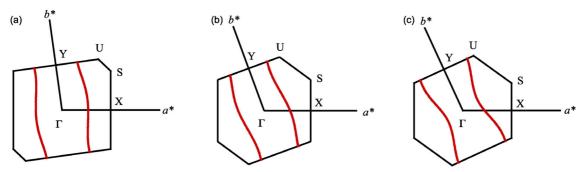


Fig. 3 Calculated Fermi surfaces of (DMEDO-TSeF)₂X; (a) $X = PF_6$, (b) $X = AsF_6$ and (c) $X = SbF_6$.

¹ T. Mori, A. Kobayashi, Y. Sasaki, H. Kobayashi, G. Saito and H. Inokuchi, *Bull. Chem. Soc. Jpn.*, 1984, 57, 627; M.-H. Whangbo, J. M. Williams, P. C. W. Leung, M. A. Beno, T. J. Emge, H. H. Wang, K. D. Carlson and G. W. Crabtree, *J. Am. Chem. Soc.*, 1985, 107, 5815.