Supplementary Information; Paper B602858F L. F. Jones et al. J. Mater. Chem Special Issue Eds Coronado, Gatteschi Data for Deposition; Figs S1 to S7; Structure of 3; Magnetism of 1 and 2, EPR of 2

Fig. S1 (bottom) Structure of the dome-like core in 3 (top) Structure of the heptanuclear cluster 3, H atoms omitted for clarity

Fig S2 Plots of χ_M , per Fe₆, for $[Fe^{III}_{8}O_3(O_2CCH_2CH_3)_6(tea)(teaH)_3(F)_3]$.MeOH.H₂O (1) in fields of 1T (2 – 300 K) and 0.1 and 0.01 T (2 – 100 K)

Fig S3 Magnetisation isotherms for compound $[Fe^{III}_{8}O_{3}(O_{2}CCH_{2}CH_{3})_{6}(tea)(teaH)_{3}(F)_{3}]$.MeOH.H₂O (1)

Fig S4 Magnetisation isotherms for $[Fe^{III}_7O_3(O_2CCMe_3)_9(bheapH)_3(H_2O)_3]$ (2), with solid lines calculated using a S = 5/2 Brillouin function and g = 2.0

Fig S5 Magnetisation isotherm values for **2** shown as solid squares, at 2 K, and calculated values plotted for *D* varying between $\pm 0.4 \text{ cm}^{-1}$ using an axial DS_z^2 spin Hamiltonian. (see colour codes in inset)

Fig S6 EPR spectra of polycrystalline powders of (compound **2**) at the indicated temperatures. Microwave frequency for 280 K and 125 K was 9.433 GHz, for 72 K and 3.6 K, 9.700 GHz. Microwave power 1.05 mW, field scan time 83.886 s, time constant 20 ms. relative spectral intensities arbitrarily scaled.

Fig. S7 Model for the S = 5/2 ground spin rationale in 2 and 3